Extralipid effects of hypolipidemic drugs – why do clinical trials weakly support experimental data?

Witold Szkróbka, Zbigniew S. Herman, Bogusław Okopień

Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, PL 40-752 Katowice, Poland

Correspondence: Bogusław Okopień, e-mail: kl3@csk.katowice.pl; far.miklin@stam.katowice.pl

Abstract:
There are many experimental and clinical data confirming the inflammatory cause of atherosclerosis. It is in agreement with the commonly accepted, pathomorphological theory described as: “reaction to injury”. Connections between the concentration of proinflammatory cytokines, chemokines and serum lipoproteins are under current investigations. There are also attempts to compare amount of the above-mentioned molecules with atherosclerotic plaque dimenstions and increased artery wall thickness. Much more promising seems to be describing the role of inflammatory cell products in vascular risk stratification. Carefully planned, prospective observations of patients are of greatest value for reliable information. The role of multicenter clinical studies is smaller because of their strict end-points and methodological restrictions. Hence, the question has arisen whether adherents of large population trials and evidence-based medicine trust in value of single-center studies. How to reconcile the effectiveness of therapy based on large population trials with complicated methods of determination of proinflammatory factors? Restrictive inclusion criteria requiring accurate diagnosis of inflammation raise doubts. For some investigators, it is only preselection, which reduces the real value of achieved results.

Anti-inflammatory and vasoprotective influence of hypolipidemic and hypotensive drugs is considered to be an important clinical supplementation to their basic mechanism of action. It cannot be ruled out that these additional effects of drugs are responsible for better outcomes in the treated patients.

Generally, precise distinguishing the effects of different groups of drugs is usually impossible in circumstances of clinical trials. However, we can measure different molecules, hs-CRP assay represents the best choice at this time.

Key words:
atherosclerosis, proinflammatory cytokines, adhesion molecules, hs-C-reactive protein (hs-CRP), hypolipemie therapy

Introduction

In the 19th century Virchow described inflammatory reaction within the vascular wall that had occurred before atherosclerosis progress. Aniczkow proved in 1913 the presence of lymphocyte and monocyte cells in atherosclerotic changes.

The endothelial injury theory; according to which injury leads to vessel myocyte proliferation and mi-
initiate the formation of fatty streak. Oxidized or gly-
phages and the uptake of lipoproteins are thought to
space. The transformation of monocytes into macro-
cilitate the migration of monocytes into the subintimal
endotheliocytes, and chemotactic factors, which fa-
cules, which facilitate the attachment of monocytes to
cretion of both: leukocyte soluble adhesions mole-
factors give rise to a variety of triggers that elicit se-
saccharides seems to be also dangerous. These risk
lished. Proinflammatory cytokines or their lipopoli-
mation as in atherosclerosis process. They produce the
fibrous cap of atherosclerotic plaque. There is also
very similar location of immunoglobulin deposits and
plement activity in subintimal space of arteries
both in atherogenesis and autoimmunologic diseases.
Many factors that promote atherogenesis, like smok-
ing, hyperlipidaemia, hyperglycemia have been estab-
ished. Proinflammatory cytokines or their lipopoli-
saccharides seems to be also dangerous. These risk
factors give rise to a variety of triggers that elicit se-
cretion of both: leukocyte soluble adhesions mole-
cules, which facilitate the attachment of monocytes to
endotheliocytes, and chemotactic factors, which fa-
cilitate the migration of monocytes into the subintimal
space. The transformation of monocytes into macro-
phages and the uptake of lipoproteins are thought to
initiate the formation of fatty streak. Oxidized or gly-
cated low density lipoproteins (LDL) take part in that
early infiltration of vascular wall. There is a suspicion
that some modified LDL may be one of several fac-
tors that contribute to loss of smooth muscle cells
through apoptosis in plaque cap.

Proinflammatory cytokines released by activated
macrophages, T cells and mastocytes may up-regulate
process of collagen breakdown, and weakening and
rupture of the cap of atherosclerotic plaque. This
damage of the plaque cap is followed by exposure the
plaque core containing tissue factor, which induces
thrombosis. On the other hand, interferon gamma
(INF-\(\gamma\)) released by T cells is one of the powerful
inhibitors of collagen fiber biosynthesis and myocyte
apoptosis initiation [12]. These processes lead to en-
hancement of plaque disruption.

Therefore, every stage in the process of atheroscle-
rosis is believed to involve cytokines, other bioactive
molecules and cells that are characteristic of inflam-
mation [3]. Some investigators defend the hypothesis
that Helicobacter pylori and Chlamydia pneumoniae
also initiate the atherosclerotic process. Many pre-
sented pro-atherosclerotic molecules provide poten-
tial targets for diagnostic purposes. The risk factors
(oxidized or glycated LDL), proinflammatory cytokines
(interleukin-1 – IL-1, tumor necrosis factor \(\alpha – \text{TNF-} \alpha\)),
adhension molecules (intercellular adhesion molecule-1
– ICAM-1, selectins), cytokines with hepatic action
(IL-6) as well as acute-phase reactants – C reactive
protein (CRP) and fibrinogen can be measured in order
to assess the intensity of inflammatory reaction. [5].

Unfortunately, these substances have only potential
value. Plasma markers of arterial injury should be
measured by standard, reproducible methods. Oppo-
sitely to commonly known risk factors, there is a need
to discover new independent methods. The next prob-
lem is the estimation of standardized normal ranges
for correct interpretation of the obtained results with-
out the seasonal fluctuations for different populations.

Up to date, only hs-C-reactive protein (hs-CR) as-
say seems to have predictive value under described
conditions in cardiovascular events risk stratification
[28]. However, hs-CR has not been a good predictor
of the extent of atherosclerotic disease, showing poor
correlation with results of Doppler ultrasound scans
of carotic arteries and coronary calcium score as-
sessed by electron beam computerized tomography
[26]. There are some data suggesting positive correla-
tion between inflammatory markers and atheroscle-
rotic mass [15]. Hence, more clinical trials are re-
quired to finally define the relationship.

A lot of studies have established hs-CR as a pre-
dictor of recurrent coronary heart disease and risk of
revascularization following restenosis. Although sev-
eral markers have been studied, the strongest associ-
ation with prognosis has been established for fibrino-
gen and hs-CR [13]. Elevated hs-CR levels also
seem to be a predictor of recurrent events in patients
with stroke and peripheral artery disease. The meta-
bolic syndrome is consistently associated with the ele-
vated hs-CR and that is why some authors concluded
that hs-CR was merely a marker for obesity and in-
sulin resistance [10, 14].

According to other suggestions proinflammatory
state in the metabolic syndrome is an important com-
ponent of that combined pathology [6].

Inflammatory markers are useful in the identifica-
tion of patients who ought to be considered for
Proinflammatory cytokines in atherosclerotic patients treated with hypolipidemic drugs

Witold Sadowski et al.

In multicenter randomized clinical trials, the inflammatory markers are very seldom classified even as secondary endpoints. Of large population trials, only Multinational Monitoring Trends and Determinants in Cardiovascular Disease (MONICA), The Pravastatin Inflammation/CRP Evaluation (PRINCE), The Pravastatin or Atorvastatin Evaluation and Infection Therapy (PROVE-IT) and Thrombolysis in Myocardial Infarction Study Group 22 (TIMI 22) trials confirmed the prognostic value of hs-CRP and statin therapeutic effectiveness in lowering activity of hs-CRP [2, 7]. It probably happened because of choosing only one central laboratory as a place where assays were performed. The sample of blood for measurement of concentrations of proinflammatory cytokines must be frozen and sent in dry ice to the central laboratory (except hs-CRP). Conditions for the transportation are not always fulfilled.

The “hard” endpoints are of major interest in clinical trials. Their results are used to formulate the algorithms and guidelines for therapy. The next problem is the restrictive procedure of patients inclusion to the investigations with measurement of cytokine activity. At first elimination of all possible inflammatory disorders have to be performed. Unfortunately, procedures sometimes differ between medical centers participating in a trial. On the other hand, the restrictive patients enrolment leads to preselections. The protocols with such procedures limit the value of the obtained results for the whole population.

In addition, the results from one site, though of the largest cognitive value, do not reflect global data for statistical analyses. However, the studies are absolutely comparable in terms of inclusion procedures and the control of course of investigation. Some assays are possible to be performed immediately in local laboratory. The next limitations in investigations of proinflammatory factors are associated with applied laboratory procedures. Cytokine activity and concentration of other molecules in plasma do not identify the cells actually producing them [16]. The isolation of inflammatory cells from blood is indicative of the circulating population without information specifically about plaque cells. On the other hand, isolation of cells from damaged vessel, destroys them and complicates estimation of their activity. The best method for confirmation of cellular source of cytokine production is the parallel measurement of the gene expression and cytokine level in the same sample [20]. The measurement of both the gene expression and its products (cytokine release) could be performed at basal conditions as well as after the stimulation with a standard factor, usually lipopolysaccharide [35]. The obtained so-called basal results are difficult to quantify and analyze statistically because of borderline values obtained with usually used standard kits.

The proinflammatory cytokines may be studied in fresh drawn blood samples, in short-term cultures or in supernatant derived from isolated ex vivo and then incubated monocytes [19].

Patients and procedures

In our investigations, we have used two procedures: the estimation of activity of proinflammatory cytokines in plasma and supernatant and the assay of monocytes isolated from the patients with IIA and IIB hyperlipidemia [8]. The activity of chemotactic factor of monocytes contributes to the unfavorable profile of two variants of hyperlipidemia. Treatment of the patients with statins and fenofibrate reduces the activity of monocyte chemotactic peptide. Similarly, therapy with statins or fenofibrate decreases plasma MCP-1 concentration in supernatant of incubated monocytes.

Pleiotropic mechanisms of action of statins includes also their impact on coagulation and fibrinolysis processes [30]. Estimated in our studies proinflammatory activity of fibrinogen, IL-1, CRP, complement, and the therapeutic effect of statins and fibrates were described previously [11, 23].
Immunosuppressive activity of statins and fibrates on T cells in prospective long-term clinical trial was established [25]. Significant decrease in IFN-γ and IL-2 released by T cells was observed after treatment.

Anti-inflammatory effect of statin and fibrate therapy was demonstrated by methods of TNF-α and IL-1 monocyte release in patients with hyperlipidemia IIa and IIb [21]. The monocyte gene expression confirmed the above-mentioned results of cytokines release [24].

In our studies in patients with impaired glucose tolerance, the relationship between insulin resistance (index HOMA) and the activity of plasma inflammation markers as well as hemostasis has been established. The improvement of metabolic parameters and decrease in cytokine levels by micronized fenofibrate has been shown [22, 34].

Angiotensin converting enzyme inhibitors (ACEI) are responsible for blocking of numerous angiotensin II-induced processes which are crucial in the atherosclerotic damage of coronary arteries. We assessed the hypotensive, antiinflammatory, antioxidant and fibrinolytic effects of plasma and tissue type ACEI in normotensive patients with stable coronary heart disease (CHD), who were given optimal treatment (aspirin, beta-adrenolytic, statin). The anti-inflammatory action affects the balance between pro- and anti-inflammatory cytokines (IL-10), and this impact was more pronounced for tissue ACEI. The same tissue type ACEI was also shown to have antioxidant, antithrombotic and profibrinolytic activity.

The inflammation source in atherosclerosis became a basis for the in vitro investigations. This concept requires the long-term prospective studies. Large multicenter clinical trials are not so unmistakable.

Such drugs as: statins, fenofibrates and ACEI have strong attenuating effect on the release of proinflammatory cytokines [9]. It could not be ruled out that these additional effects of drugs are responsible for better outcomes in the treated patients [33].

In a majority of reports, the anti-inflammatory effect of hypolipemic drugs is independent of lipogram correction, and for hypotensive drugs, it is independent of decreasing blood pressure [29]. It is possible to estimate the prognostic reduction of cardiovascular events after therapy with hypolipemic and hypotensive drugs. However, clinical benefits for treated patients are much greater than prognostic values [27].

The correlation between basal drug effects and their additional mechanisms of action has not been clearly confirmed.

Parallel groups of patients received a standard therapy; hypolipemic diet or placebo. The study provided evidence of the additional direct anti-inflammatory mechanism of action of the investigated drug.

Although we can measure different types of molecules, hs-CRP assay represents the best choice at this time.

References:

Received: March 28, 2007; in revised form: August 04, 2007.