Pharmacokinetics of a synthetic interferon inducer amixin in mice

Vladimir G. Zinkovsky¹, Olga V. Zhuk¹, Svetlana K. Sumriy²

¹Department of Biotechnology and Molecular Biology, University of Opole, Kominka 4, PL 45-035 Opole, Poland
²Department of Biology, Odessa National University, Dvoryanskaya 2, 65000 Odessa, Ukraine

Correspondence: Olga V. Zhuk, e-mail: olga_zhuk@uni.opole.pl

Abstract: Pharmacokinetics of amixin, a synthetic interferon inducer, has been studied in mice under intravenous and oral routes of administration. Following oral administration, 80% of the drug was eliminated in the unchanged form. Its absolute biological availability comprised 0.7. In comparison to oral administration, after intravenous injection concentrations of amixin and its radioactive metabolites were higher during the first 5–120 min of the experiment in all organs and tissues. During the first 4–24 h, we observed an increase in the total radioactive material that was similar for both modes of administration. Low drug elimination rate was noted under both conditions. A novel integral model-independent method for estimation of equilibrium tissue-to-plasma partition ratios (Kᵦ) has been proposed. The suggested integral parameter Kᵦ does not depend on the structure of the kinetic scheme and, most importantly, could be used for analysis of incomplete kinetic curves. We also propose a combined model that could help determine parameters of irreversible xenobiotic binding, the extent of the absorption from the intestine and relative efficacy of the hepatic excretion, in particular presystemic drug elimination.

Key words: amixin (tilorone), distribution, xenobiotic mass transfer, area under curve

Introduction

Amixin or tilorone (2,7-bis-[2-N,N-diethylamino-ethoxy]-fluorene-9-one) is a synthetic immunomodulator widely used in therapy and prophylaxis of viral diseases [13, 24, 31–33]. Antiviral and interferon-inducing action of tilorone has been known for more than 30 years [8–10]. According to numerous studies [7, 17, 18, 20, 23, 30, 34, 35, 38, 44], tilorone stimulates production of endogenous interferon mainly in T-lymphocytes. Binding of interferons to their specific receptors initiates synthesis of antiviral, antiproliferative and immunomodulating substances [4, 6, 26, 28, 40, 46]. Antiviral activity of tilorone against hepatitis B and C viruses has received a particular attention [13, 17, 39]. Activation of spleen natural killer cells in vivo has been documented and a possibility of using tilorone as a cytostatic drug was discussed [1–3, 25, 27, 29]. One of the possible mechanisms of antiviral effects of tilorone could involve its interaction with nucleic acids [8–10, 21, 37]. Tilorone and similar compounds could, therefore, have an oncotherapeutic potential [5, 12, 22].

In contrast to many studies on the biological activity and mechanisms of action of tilorone, there are very few accounts of its pharmacokinetics in animals. Wacker et al. have studied distribution of the total
radioactivity after intraperitoneal administration of
\(^{14}\text{C}\)-tilorone at a single dose of 1.5 mg/kg and only
after 16 h [45]. Maximum contents of tilorone were
determined in the liver, spleen and kidneys of mice.
Gaur and Chandra who studied distribution of tilorone
24 h after its administration have obtained similar re-

sults [15]. Intracellular distribution of
\(^{14}\text{C}\)-tilorone hydrochloride in various tissues of rats and mice was
also reported in the latter study. Golovenko and Bori-
syuk studied pharmacokinetics of amixin following
multiple oral administration [19]. They noted a high
steady-state concentration of the drug in various tis-

sues and its slow elimination. It has been demon-
strated that biotransformation of tilorone in rats and
mice is not significant [41, 45]. Minor metabolites de-
tected in the above-mentioned studies were products
of oxidation of aliphatic moieties of the tilorone mole-
cule. Depending on the biosubstrate, 70–90% of the
total radioactivity was represented by the parent drug
[41, 45]. This allows for using kinetics of the total ra-
doactivity contents for pharmacokinetic studies of
\(^{3}\text{H}\)-tilorone.

In our study, we, therefore, studied kinetics of
\(^{3}\text{H}\)-amixin distribution in tissues of mice following
a single intravenous or oral administration. Since eli-
mination of amixin is very slow, we proposed a novel
integral method of model-independent analysis that
could be used to analyze pharmacokinetics of xenobi-
otics that lack a pronounced distribution or elimination
phase. Also a combined model-independent method
has been worked out to determine irreversible binding
of amixin in the body.

Materials and Methods

The study was conducted according to the principles
of the “Declaration of Helsinki”. Experimental proto-

cols were approved by the Ethics Committee of the
Pharmacological Committee of Ukraine and performed
in strict accordance with the Ethics Committee regu-

lations for the use of experimental animals.

Animals

The experiments were performed on female outbreed
mice weighing 18–24 g. The animals were obtained
from the breeding facility of the Russian Academy of
Medical Sciences (“Stolbovaya”, Moscow, Russia)
and housed in groups of eight to ten animals per cage.
The mice were kept under a continuous 12 h light-
dark cycle at the room temperature and were provided
with food and water ad libitum.

Experimental procedures

Pharmacokinetics of amixin was studied using labeled
2,7-bis-[2-N,N-diethylamino-[\(^{3}\text{H}\)-ethoxy]-fluorene-9-
one dihydrochloride (I) (JSC Interkhim, Odessa,
Ukraine). High radiochemical purity of \(^{3}\text{H}\)-I (99.6%)
was inferred from radiochromatographic analysis and
specific radioactivity was 2.3 Ci/mol.

Amixin was administered intravenously in an iso-
tonic solution into caudal vein and orally at a dose of
50 mg/kg. Animals were killed by rapid decapitation
at 5, 15, 30 min, 1, 2, 4, 8 and 24 h after administra-
tion and their organs and tissues were taken for analy-

sis. Total radioactivity was determined in 0.3 ml sam-
ple of plasma and tissue homogenates (1:5) using Tri
Carb 2700 scintillation counter (Canberra Packard,
USA).

Data analysis

Calculations of total radioactivity in the body after in-
jection of \(^{3}\text{H}\)-I (mean ± SEM) and regression analy-

sis were performed using Microsoft Excel. Values of
the areas under the “drug concentration–time” curves
(AUC\(_{0-\text{t}}\) were calculated by the trapezoidal rule.
Values of total radioactivity in tissues were compared
by Student’s \(t\)-test for unpaired data. The results were
considered to be statistically significant when \(p < 0.05\).

Results

Amixin was rapidly distributed in the body upon both
ways of administration (Tab. 1). A rapid phase of dis-
tribution of \(^{3}\text{H}\)-I has been noted that faded already
during the first hour following drug administration.
The highest total radioactivity was observed in the
 liver and kidneys of mice. The lowest radioactive
counts have been found in plasma (Tab. 1). The con-
centration of \(^{3}\text{H}\)-I and its radioactive metabolites in
the liver was two orders of magnitude higher than in
blood throughout the whole study period. Elimination
Pharmacokinetics of amixin

Tab. 1. The contents of the total radioactive material (DPM*10^3/g(ml)) in organs and tissues of mice in the interval of 0.083–24 h after intravenous and oral administration of [3H]-I in a dose 50 mg/kg.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Intravenous administration</th>
<th>Oral administration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spleen</td>
<td>Brain</td>
</tr>
<tr>
<td></td>
<td>Spleen</td>
<td>Brain</td>
</tr>
<tr>
<td>0.083</td>
<td>17.8 ± 0.24</td>
<td>23.5 ± 4.08</td>
</tr>
<tr>
<td>0.25</td>
<td>35.0 ± 5.67</td>
<td>25.4 ± 2.89</td>
</tr>
<tr>
<td>0.5</td>
<td>43.5 ± 6.78</td>
<td>26.35 ± 4.01</td>
</tr>
<tr>
<td>1</td>
<td>51.0 ± 7.82</td>
<td>25.35 ± 3.72</td>
</tr>
<tr>
<td>2</td>
<td>77.4 ± 8.24</td>
<td>29.55 ± 1.39</td>
</tr>
<tr>
<td>4</td>
<td>51.4 ± 6.19</td>
<td>31.3 ± 5.2</td>
</tr>
<tr>
<td>6</td>
<td>35.6 ± 6.29</td>
<td>17.15 ± 2.96</td>
</tr>
<tr>
<td>8</td>
<td>65.5 ± 14.02</td>
<td>16.6 ± 2.13</td>
</tr>
<tr>
<td>24</td>
<td>97.4 ± 7.66</td>
<td>9.55 ± 1.16</td>
</tr>
<tr>
<td></td>
<td>12.5 ± 6.08</td>
<td>2.2 ± 0.44</td>
</tr>
<tr>
<td>0.5</td>
<td>14.2 ± 2.74</td>
<td>3.2 ± 0.483</td>
</tr>
<tr>
<td>1</td>
<td>36.1 ± 5.78</td>
<td>1.7 ± 0.404</td>
</tr>
<tr>
<td>2</td>
<td>49.0 ± 5.56</td>
<td>7.1 ± 0.62</td>
</tr>
<tr>
<td>4</td>
<td>36.6 ± 3.35</td>
<td>11.1 ± 0.99</td>
</tr>
<tr>
<td>6</td>
<td>24.9 ± 3.87</td>
<td>8.9 ± 1.64</td>
</tr>
<tr>
<td>8</td>
<td>58.1 ± 8.07</td>
<td>11.2 ± 2.35</td>
</tr>
<tr>
<td>24</td>
<td>109.5 ± 14.98</td>
<td>16.0 ± 3.17</td>
</tr>
</tbody>
</table>
of the total radioactivity was rather slow during 0.083–24 h after oral administration of [3H]-I. Variations of total radioactivity contents were observed in some tissues during the first intervals of the experiment (0.083–1 h), which were not significant as estimated by Student’s t-test (Tab. 1). These variations led to humps in the graphs of the relationships between AUC values (see below). A more detailed study of the mechanism of these variations is necessary, which was, however, beyond the scope of our work. The critical observation crucial for our further analysis of the amixin mass transfer between blood and organs was that the ratio of rate constants approached a steady-state value equal to the equilibrium constant.

We noted that in the case of intravenous injection of [3H]-I, total radioactivity in plasma, kidneys, brain, heart and skeletal muscle tissues was significantly higher (p < 0.01) than after oral administration. Such differences, however, have not been observed for liver and spleen. In spleen, significant differences in contents of the drug between different ways of administration were noted only during initial 15 and 30 min. The route of administration did not affect amount of amixin in the liver. An interesting feature of amixin pharmacokinetics after intravenous injection was a high level of total radioactivity in lung tissue at the beginning of the experiment (0.083–2 h). This observation possibly indicates first-pass uptake of the drug by lungs. Also, disproportional increase in total radioactivity was noted in spleen tissue (Tab. 1).

Analysis of the distribution of amixin prompted us to divide all tissues studied into three groups. The first group consisted of organs where first-pass effects and uptake were significant, i.e. hepatic and lung tissues. Organs where drug concentrations were proportional to plasma levels, and where practically steady-state levels of total radioactivity have been observed (kidneys, heart and skeletal muscles, brain) belonged to the second group. Spleen tissue represented the third group where disproportional enhancement of total radioactivity with respect to plasma levels was detected.

Model-independent estimation of distribution of amixin in organs and tissues of experimental animals

Model-independent approaches to the analysis of distribution of xenobiotics are based on the most general kinetic parameters that do not depend on the structure of the kinetic scheme of the mass transfer of substances in the body [16].

In our previous works, the analysis of the distribution of a xenobiotic between blood and tissues was based on the assumption that the rate of change in its contents in an organ (d(3A)/dt) is equal to the difference between rate of its transfer from blood (compartment (1) (12v)) into this organ (compartment (2)) and rate of the reverse process from (2) in (1) described by rate constants (12k and 1k) [42, 43]:

\[
\frac{d(2A_t)}{dt} = 12v_t - 21v_t
\]

\[
12v_t = 12k \cdot 1A_t
\]

\[
21v_t = 21k \cdot 2A_t
\]

\[
1A_t = 1V \cdot C_t
\]

\[
2A_t = 2V \cdot C_t
\]

where 1A_t and 2A_t are quantities of drug in compartments (1) and (2) at time t, 1V and 2V are apparent distribution volumes in compartments (1) and (2); 1C_t and 2C_t are concentrations of A in compartments (1) and (2).

Model-independent approaches to the analysis of results are based on the equation obtained by integration (from 0 to t) of Eq. (1):

\[
2A_t = 12k \cdot 1V \int_0^t 1C_t \, dt - 21k \cdot 2V \int_0^t 2C_t \, dt
\]

When \(t \rightarrow \infty \) in the case of a single administration of a xenobiotic, then \(2A_t \rightarrow 0 \). Thus, equation (2) becomes simplified and it is possible to define the value of an equilibrium constant of distribution between blood and studied tissue (Kp):

\[
Kp = \frac{12k \cdot 1V}{21k \cdot 2V} \left(\int_0^\infty 2C_t \, dt \right) / \left(\int_0^\infty 1C_t \, dt \right)
\]

This approach is widely used when analyzing results in accordance with the formal apparatus of physiological modeling of distribution processes of drugs in the body [16, 36]. A disadvantage of this method is the need to estimate \(\int_0^\infty 1C_t \, dt \) and \(\int_0^\infty 2C_t \, dt \) values based on results obtained in the limited time interval, set by the experimental protocol. To calculate values
of integrals of xenobiotic concentration \(\int_{0}^{\infty} C_i \, dt \) areas under pharmacokinetic curves (AUC) are determined in the interval from 0 to \(t \), by the trapezoidal rule.

If mass transfer of substances in the body indeed follows the mechanisms described by Eq. (1), then irrespective of the nature of changes in xenobiotic concentration in blood (1), its quantity transferred into tissue from the starting time (\(t = 0, 2C_0 = 0 \)) to the time \(t \) \(\int_{0}^{t} 12v_i \, dt \) will be:

\[
\int_{0}^{t} 12v_i \, dt = 12k \int_{0}^{t} 1C_i \, dt = 12k \int_{0}^{t} 1AUC_{0-t} \
\]

where \(12k \) is the rate constant (expressed in units of time\(^{-1}\)) of xenobiotic translation from (1) to (2); \(1AUC_{0-t} \) is the area under the concentration-time relationship of the drug in blood (plasma), determined within the interval from time 0 to \(t \).

The quantity of the substance eliminated from (2) (i.e. transferred back to (1) from (2)) at time \(t \) is:

\[
\int_{0}^{t} 21v_i \, dt = 21k \int_{0}^{t} 2C_i \, dt = 21k \int_{0}^{t} 2AUC_{0-t} \
\]

where \(21k \) is the rate constant of xenobiotic translation from the compartment (2) to (1); \(2AUC_{0-t} \) is the area under the concentration-time relationship of the drug in tissue, determined, analogously, within the interval from time 0 to \(t \).

Then, the quantity of the substance present in the tissue (2) at time \(t \) (\(2A_t \)) is:

\[
2A_t = 2C_t \int_{0}^{t} 2AUC_{0-t} = 2AUC_{0-t} \
\]

Therefore:

\[
2AUC_{0-t} = \frac{12k}{21k} \int_{0}^{t} 1AUC_{0-t} - \frac{2C_t}{21k} \int_{0}^{t} 1AUC_{0-t} \
\]

The value of \(\frac{2C_t}{21k} \int_{0}^{t} 1AUC_{0-t} \) from Eq. (7) should approach zero in the course of the experiment, because the value of \(2C_t \) approaches zero, as \(t \to \infty \), and the value of \(1AUC_{0-t} \to 1AUC_{0-\infty} \). Thus, with the increase in time of the experiment, the variable \(2AUC_{0-t}/ 1AUC_{0-\infty} \) should approach \((\frac{12k}{21k} \int_{0}^{t} 1V)/ (\frac{21k}{21k} \int_{0}^{t} 2V) = K_p \). This conclusion was confirmed during the analysis of the distribution kinetics of amixin in mice (Fig. 1).

To determine the value of \((\frac{12k}{21k} \int_{0}^{t} 1V)/ (\frac{21k}{21k} \int_{0}^{t} 2V) = K_p \) by regression approach, the following transformation of Eq. 7 could be applied:

\[
2AUC_{0-t} = \frac{12k}{21k} \int_{0}^{t} 1AUC_{0-t} - \frac{2C_t}{21k} \int_{0}^{t} 1AUC_{0-t} \
\]

Since the variable \(\frac{2C_t}{21k} \int_{0}^{t} 1AUC_{0-t} \) can be assumed to have a small value and its change would negligibly affect the determination of the value of \((\frac{12k}{21k} \int_{0}^{t} 1V)/ (\frac{21k}{21k} \int_{0}^{t} 2V) \), it can be defined as a constant (\(b \)) in a linear equation:

\[
2AUC_{0-t} = \frac{12k}{21k} \int_{0}^{t} 1AUC_{0-t} + b \
\]

Fig. 1. The ratio between the areas under curves of the contents of total radioactivity in tissue and plasma \((\frac{AUC_{0-t}}{AUC_{0-\infty}}) \) after intravenous \((\frac{AUC_{0-t}}{AUC_{0-\infty}}) \) administration of \([\text{H}]\)-amixin into mice at a dose of 50 mg/kg as a function of time of the experiment.
As seen from Figure 2, this assumption is quite acceptable. The corresponding values of \((\frac{12k_1V}{21k_2V}) = K_p\), determined by regression approach are equal to regression coefficients in Figure 2 and asymptotes’ values in Figure 1 (abscissa \(x = 1^{-1}AUC_0-t\); ordinate \(y = 2^{-1}AUC_0-t\)).

As follows from this simple integral model-independent analysis (Figs. 1, 2, Tab. 2), amixin pharmacokinetics is characterized by higher values of rate constants of its distribution into organs and tissues from blood in comparison to constants of the reverse processes. The ratios of these values are identical at different ways of administration of the drug (Tab. 2). The ratio of AUC values in conditions of oral and intravenous administrations was \(\approx 0.6\). This matched similar values determined for plasma (0.7). The ratio between the area under the “concentration–time” relationship of the amixin in plasma for the two routes of administration \(\frac{\rho_0 AUC_{0-m}}{iv AUC_{0-m}}\) asymptotically approached the value of absolute bioavailability \(F_{abs}\).

Determination of the irreversible binding of amixin in the spleen of mice

Combined methods of analysis assume the presence of intercompartmental (mass transfer) and intracompartmental (metabolism, binding) phenomena in the kinetic scheme.

Irreversible binding parameters in various organs and tissues are quintessential for the estimation of drug safety [36]. Therefore, in the present paper, we would like to propose a method based on the following postulates:

1. The amount of a xenobiotic in an organ (tissue) is defined by the difference between integers of the rates of its transfer from blood (1) to an organ and from an organ (2) to blood (1).

2. The rates of mass transfer between the two bio-phases – blood (1) and an organ (2) studied are proportional to xenobiotic concentrations in them [16].

Tab. 2. Model-independent pharmacokinetic parameters of the distribution of amixin in mice after intravenous and oral administration at a dose of 50 mg/kg

<table>
<thead>
<tr>
<th>Organ</th>
<th>Intravenous administration</th>
<th>Oral administration</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2AUC_{0-24}) (DPM10^3)/(gh)</td>
<td>(2AUC_{0-24}) (DPM10^3)/(gh)</td>
<td>(2AUC_{0-24}), (\rho_0)</td>
</tr>
<tr>
<td>Skeletal muscles</td>
<td>468.4 ± 20.34</td>
<td>30.3 ± 2.13</td>
<td>271.9 ± 18.90</td>
</tr>
<tr>
<td>Heart muscle</td>
<td>613.3 ± 25.65</td>
<td>38.01 ± 3.01</td>
<td>360.4 ± 23.46</td>
</tr>
<tr>
<td>Kidneys</td>
<td>1329.0 ± 10.35</td>
<td>85.7 ± 5.67</td>
<td>826.1 ± 69.75</td>
</tr>
<tr>
<td>Brain</td>
<td>404.4 ± 37.89</td>
<td>26.6 ± 1.28</td>
<td>275.8 ± 28.90</td>
</tr>
</tbody>
</table>
3. The rate of xenobiotic binding by an organ studied is proportional to the quantity of free (non-bound) substance ($\text{free}_2 \cdot C_t \cdot 2V$):

$$2V_t = \text{free}_2 \cdot C_t \cdot 2V \cdot 22\chi$$

(10)

where $2V$ and 22χ are the volume of an organ and rate constant (first order, dimensionality – [time]$^{-1}$) of the xenobiotic binding (Fig. 3).

To detect the very fact of irreversible amixin binding to spleen tissue and to estimate parameters of this process, we have worked out the following method.

The ratio of the amixin concentration in spleen to its concentration in plasma increased practically linearly during the time of experiment (Fig. 4). This could be due to irreversible binding of amixin to tissues or to the fact that the ratio of rate constants of the onward and backward processes is large, while the characteristic times (the backward values of rate constants of these processes) of them significantly exceeded the experimental time of observation [47].

On the basis of the above-mentioned postulates, the quantity of the irreversibly bound drug ($\text{bound}_2 \cdot C_t$) at time t is:

$$\text{bound}_2 \cdot C_t \cdot 2V = 22\chi \cdot \int_0^t 2V_t \, dt = 22\chi \cdot 2V \cdot \text{free}_2 \cdot AUC_{0-t}$$

(11)

where $\text{free}_2 \cdot AUC_{0-t}$ is the area under the pharmacokinetic concentration-time relationship of the free (unbound) drug in tissue.

Therefore:

$$\text{bound}_2 \cdot C_t = \text{free}_2 \cdot AUC_{0-t} \cdot 22\chi$$

(11a)

The concentration of the free drug, ($\text{free}_2 \cdot C$) cannot be determined directly, so total contents of free and bound drug is usually determined experimentally ($\text{free}_2 \cdot C_t + \text{bound}_2 \cdot C_t$). However, it follows from the Figure 3 and Eqs. (7) and (8) that:

$$\text{free}_2 \cdot C_t \cdot 2V = \frac{1}{21k} \cdot 12k^1 \cdot V - \text{free}_2 \cdot AUC_{0-t} \cdot 2V \cdot \frac{1}{2V} \left(\frac{1}{2V} + 22\chi \right)$$

(12)

where $\frac{12k^1 \cdot V}{2V} \cdot \text{AUC}_{0-t} = \int_0^t 2V_t \, dt$.

Substitution of (11a) into (12) results in:

$$\left(\text{free}_2 \cdot C_t + \text{bound}_2 \cdot C_t \right) \cdot 2V = \frac{1}{21k} \cdot 12k^1 \cdot V - \text{free}_2 \cdot AUC_{0-t} \cdot 2V$$

(13)

$$\left(\text{free}_2 \cdot C_t + \text{bound}_2 \cdot C_t \right) = \frac{1}{21k} \cdot 12k^1 \cdot V - \text{free}_2 \cdot AUC_{0-t} \cdot 2V$$

(14)

At $t \to \infty$ $\text{free}_2 \cdot AUC_{0-\infty} \to 1 \cdot AUC_{0-\infty} = \frac{12k^1 \cdot V}{2V} \left(\frac{1}{2V} + 22\chi \right)$.
Then:

\[
\frac{\text{free,}_t\text{C}_\infty + \text{bound,}_t\text{C}_\infty}{\frac{1}{AUC}_{0-\infty}} = \frac{12}{2} k_1 V - \frac{2}{2} V \left(\frac{21}{k + 22} \right) = \\
= \frac{12}{2} k_1 V - \frac{2}{2} V \left(\frac{21}{k + 22} \right) = \\
\frac{12}{2} k_1 V - \frac{2}{2} V \left(\frac{21}{k + 22} \right)
\]

(15)

Since at \(t \to \infty \) value free,\(_t\text{C}_\infty \to 0 \), the quantity of bound drug can be estimated from the graph with coordinates \(\left(\frac{2}{AUC_{0-t}} \right), t \) (Fig. 5). At \(t \to 0 \) the curve crosses the ordinate in the point equal to \(\frac{12}{2} k_1 V / 2V \) and asymptotically approaches the value \(\frac{21}{2V} \) with time. The former value \(\frac{12}{2} k_1 V / 2V \) can be estimated at \(\approx 300 \) h\(^{-1} \), while the latter is within \(3-8 \) h\(^{-1} \). Thus, relative efficiency of the irreversible binding \(\frac{21}{2V} \) is approximately 1–2%.

In other words, almost 98–99% of the drug that is taken up by the spleen is eliminated back to plasma, while 1–2% irreversibly binds to the tissue. Nonetheless, even such a seemingly ineffective process significantly affects the kinetics of contents of [3H]-products in the spleen (Tab. 1, Fig. 5). This is explained by a high rate of the on- and backward mass transfer of amixin in the “spleen-blood” system.

No significant irreversible binding of amixin has been observed in other organs.

The estimation of the degree of absorption of amixin from the intestine, its presystemic elimination and first-pass effect

To assess the absorption of amixin from the intestine, relative hepatic excretion and, in particular, presystemic elimination, we have compared kinetics of its contents in the plasma and liver upon its administration via intravenous and oral routes. As could be seen from Table 1, the contents of the drug in the liver are more than two orders of magnitude higher than its contents in blood during the whole experimental period. This may indicate a significant hepatic excretion, including presystemic one, even at low values of the rate constant of amixin excretion with bile (\(k_{el,bil} \)).

Formal framework of the analysis

Biological availability of amixin was \(\approx 0.7 \). Principal kinetic scheme of the distribution and elimination of the drug under conditions of intravenous (a) and oral (b) administrations is presented in Figure 6.

Since plasma (compartment 1) is reversibly connected to other organs with unknown volumes, values of distribution and on-/off- rate constants, it is de-
picted as an open compartment of an indefinite volume. The known values are concentrations of amixin in plasma \((\text{C}_t^\text{t}) \) at various time points \((t) \). It is assumed that renal excretion takes place from this compartment with the rate constant \(\text{el,renk} \). This is the only excretion route from plasma. Also, plasma is reversibly linked with the liver (compartment 2) by mass transfer of amixin that is characterized by rate constants \(12k \) and \(21k \). Hepatic excretion with bile is described by the rate constant \(\text{el,bilk} \).

Following oral administration (Fig. 6b) amixin enters hepatoportal system with the rate constant \(1/c99 \) and, consequently, into the liver. At the same time, the fraction of the drug that was not absorbed during the passage through the intestine is excreted with feces (rate constant \(2/c99 \)).

"Complete" uptake into the liver after oral administration \((F_1) \) is given by:

\[
F_1 = \frac{1\chi}{1\chi + 2\chi} \quad (16)
\]

Having entered into hepatoportal system, fraction of the drug \(p_D \) equal to \(p_D = F_1 \)

undergoes two parallel processes, namely entry into circulatory system and presystemic elimination. The dose of the drug entering circulation \((p_D) \) is given by:

\[
p_D^2 = p_D^1 \frac{21k}{21k + \text{el,bilk}k} \quad (18)
\]

where \(\frac{21k}{21k + \text{el,bilk}k} = F_2 \) is relative efficiency of the mass transfer from the liver (compartment 2) into blood (compartment 1):

\[
F_{abs} = F_1 F_2 \quad (19)
\]

\[
p_D^2 = p_D^1 F_{abs} = p_D^1 F_1 F_2 \quad (20)
\]

\[
F_{abs} = \frac{iv}{p_D} \frac{1}{p_D} \frac{1}{1AUC_{0-t}^0} = \frac{1\chi}{1\chi + 2\chi} \cdot \frac{21k}{21k + \text{el,bilk}k} \quad (21)
\]

Some fraction of the drug in the hepatoportal system undergoes presystemic elimination:

\[
p_D^3 = p_D = (1 - F_2) F_1 = \frac{1\chi}{1\chi + 2\chi} \cdot \frac{\text{el,bilk}k}{21k + \text{el,bilk}k} \quad (22)
\]

The utilization of the formal framework of the diffusion modeling allows for calculation of the values presented in Eqs. (15–22) on the basis of experimental data (Tab. 1) and the following considerations [43]:

1. Upon intravenous administration the amount of the drug transferred into the liver from blood at time \(t \) is:

\[
\frac{12k}{2V} 1AUC_{0-t}^0 - \left(\frac{21k + \text{el,bilk}k}{21k + \text{el,bilk}k + \text{el,k}k} \right) \frac{2AUC_{0-t}^0}{1AUC_{0-t}^0} \quad (23)
\]

Then the plot of the relationship \(\frac{2AUC_{0-t}^0}{1AUC_{0-t}^0} / \frac{1AUC_{0-t}^0}{1AUC_{0-t}^0} \) versus \(t \) (Fig. 7) asymptotically approaches

\[
\frac{2AUC_{0-t}^0}{1AUC_{0-t}^0} = \frac{12k}{2V} 1AUC_{0-t}^0 - \left(\frac{21k + \text{el,bilk}k}{21k + \text{el,bilk}k + \text{el,k}k} \right) \frac{2AUC_{0-t}^0}{1AUC_{0-t}^0} \quad (24)
\]

Fig. 7. The ratio between the areas under curves of the content of total radioactivity in liver and plasma after intravenous and oral (\(\text{AUC}_{iv}^0 \)/ \(\text{AUC}_{iv}^0 \)) administration of amixin into mice at a dose of 50 mg/kg as a function of time of the experiment.
as the value of $2C_t/\frac{1}{V}AUC_{0-t} \to 0$ at $t \to \infty$.

By means of the regression analysis of the experimental data (Fig. 8) according to the Eq. (24) the value $\frac{1}{21k}V$ was found to be equal to 154.

4. Under oral administration of a dose of amixin D, it is F_{1m} that actually enters hepatoporal system. It is not a sole source from which amixin is transferred to blood: the fraction of the drug, which was transferred back from the liver into blood, undergoes reversible transfer to organs and tissues. Also, amixin is excreted from blood via renal route with the rate constant $\frac{el_{\text{ren}}}{k}$.

Therefore, concentration of amixin in plasma ($1C_{po}$) at time t after its oral administration can be given by the following equation:

$$1C_{po} = \frac{2AUC_{po}}{1 - \frac{1}{21k}V} - \frac{1}{21k}AUC_{po} = \frac{1}{21k}AUC_{po} + \frac{1}{21k}AUC_{po} - \frac{1}{21k}AUC_{po}$$

where the term within square brackets corresponds to the unknown quantity of amixin that is located at time t in organs and tissues reversibly linked to plasma by mass transfer processes with the rate constants $\frac{1}{21k}$ and $\frac{1}{k}$. Those organs and tissues are not shown in Fig. 6, consequently plasma is depicted as being open. Therefore:

$$\frac{2AUC_{po}}{1AUC_{po} - \frac{1}{21k}AUC_{po}} = \frac{12k + \frac{1}{21k}}{21k} - \frac{1}{21k}AUC_{po}$$

(26)

5. Both the value of $1C_t$ and terms of Eq. (25) and (26) in square brackets approach zero in the course of the experiment. Thus (Fig. 7), the value $\frac{2AUC_{po}}{1AUC_{po}}$ asymptotically approaches the value of $\frac{12k + \frac{1}{21k}}{21k}V$, that could be found (Fig. 8) from the Eq. (25) and was equal to 294.

6. Since the excretion rate constants are usually one or two orders of magnitude lower than the rate constants describing the reversible mass transfer of xenobiotics between blood and tissues, we can assume that:

$$\frac{12k + \frac{1}{21k}}{21k}V \approx \frac{12k}{21k}V$$

(27)

where terms in brackets are asymptotes of the Fig. 8. The value $\frac{12k}{21k}V \approx 200$.

Then:

$$\frac{2AUC_{po}}{1AUC_{po}} = \frac{12k}{21k}$$

(28)

Since $F_{abs} = F_{1m}F_2$, we could assume that $F_2 \approx 0.9$, i.e. amixin is almost fully absorbed from the intestine into the body after its oral administration.

7. Presystemic elimination of amixin is: $\frac{poD_3}{poD_3 F_1(1-F_2)} = 0.21 poD$.

8. It is also possible to estimate the ratio of the values of hepatic and renal clearance ($\frac{el_{\text{ren}}}{k}$):
and to predict the ratio of the amixin quantities that are excreted with feces and urine under intravenous administration:

\[\frac{f_{e,Bil}}{f_{e,ren}} = \left(\frac{1/154 - 1/200}{294 - 200} \right) 200 = 0.0032 \]

Contents of amixin in the kidneys, brain, skeletal and cardiac muscle changed proportionally to its concentration in plasma. These tissues, with the exception of cardiac muscle, served as peripheral depots. In all experiments, the equilibrium constant of mass transfer processes between blood stream and organs was higher than unity that suggests that amixin rapidly and reversibly was distributed into these organs from blood. We demonstrate that amixin accumulated in the spleen throughout 24-h period after administration by either oral or intravenous route. This is in agreement with previously reported data on the distribution of tilorone in lymphoid organs [14, 15]. During the first 60 min, the route of administration significantly affected amount of amixin in the spleen that were three- to fivefold higher in the case of intravenous administration.

In the present study, we proposed a variant of the method for determination of \(K_p \) described in our previous papers [42, 43]. Derivation of the equilibrium constant of the mass transfer between organs and blood, demonstrated that the use of such integral values as area under the curve of xenobiotic concentration (from 0 to \(t \)) gave an unbiased estimation of the mass transfer in contrast to the case when xenobiotic concentration ratios in blood and organs at various time points are used. The suggested integral parameter does not depend on the structure of the kinetic scheme and, most importantly, can be used for analysis of incomplete kinetic curves. Thus, it can be used in the case of the xenobiotic mass transfer in conditions of a poorly defined shape of the kinetic curve, which lacks some phase (absorption, distribution or elimination) during the interval of observation. In our case, such examples were contents of amixin in the brain, spleen and skeletal muscles following oral administration. It should be noted that the suggested analysis of the amixin distribution using total radioactivity is applicable only to studies of drugs with insignificant biotransformation in the body. For substances that undergo intensive metabolism, it would be necessary to study pharmacokinetics of both the original drug and its metabolites with the subsequent use of combined models. The applicability of this formal approach has been practically validated on the example of the distribution of amixin in mice after different ways of its administration. On the basis of this approach, we proposed a combined model that can help to determine parameters of irreversible binding of xenobiotics in mice, the extent of the absorption from

\[
\begin{align*}
&\frac{B_{iv_0-\infty}^{iv}}{B_{iv_0-\infty}^{po}} = \frac{int_k \cdot 2V}{1_ren \cdot k \cdot 1_V} \cdot \frac{2AUC_{iv_0-\infty}}{AUC_{po_0-\infty}} = 0.0032 \cdot 154 = 0.49 \\
&\frac{B_{po_0-\infty}^{po}}{B_{po_0-\infty}^{po}} = \frac{int_k \cdot 2V}{1_ren \cdot k \cdot 1_V} \cdot \frac{2AUC_{po_0-\infty}}{AUC_{po_0-\infty}} = 0.0032 \cdot 294 = 0.94.
\end{align*}
\]
the intestine, relative efficacy of the hepatic excretion, and in particular presystemic elimination of drugs.

References:

42. Zinkovsky VG, Schukin SI: Approach to model-independent method for analysis of disposition of xenobiotics between the blood and tissue under its administration in a single dose (Ukrainian). Attainment of the Biology and Medicine, 2005, 2, 27–32.

Received: February 6, 2007; in revised form: November 12, 2007.