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Abstract:

Located on the luminal surface of vascular endothelial cells, the glycocalyx is composed of a negatively charged mesh of

proteoglycans, glycosaminoglycans, glycoproteins and glycolipids and harbors a wide array of enzymes that contribute in regulation

of leukocyte-/thrombocyte adherence, with a principal role in plasma and vessel wall homeostasis. Glycocalyx disruption is

accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli which emphasizes that not only the composition

of the glycocalyx is important in facilitating these properties but that the contribution of its physical dimension and barrier properties

should also be considered. In addition, similarities found between micro-versus macro vascular beds suggest common structural

properties throughout the entire vascular bed that might be of importance in protective strategies against vascular perturbation.

Collectively, these data lend support to a potential role of the glycocalyx as a first barrier in protection against atherogenic insults.

Therefore, it will be a challenge to determine whether glycocalyx volume measurement, systemically or at the individual capillary

level, is a feasible surrogate marker for cardiovascular disease, and whether it may prove to be of use to assess the impact of novel

interventions aimed at glycocalyx restoration on atherosclerosis progression.
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Abbreviations: ec-SOD – endothelial cell super oxide dismu-

tase, LDL – low density lipoprotein, Lp – hydraulic conductiv-

ity, NO – nitric oxide, OPS imaging – orthogonal polarization

spectral imaging

The endothelial surface glycocalyx

At the interface of flowing blood and the vascular en-

dothelial lining, a glycocalyx shields the vascular wall

from direct exposure to blood flow, contributes to the

vascular permeability barrier and its anti-adhesive

properties, and stimulates endothelial release of nitric

oxide (NO) by mechanotransducing fluid shear

stresses. Numerous studies have contributed in eluci-

dating endothelial glycocalyx composition, as re-

viewed by Pries et al. [22], that resulted in the view of

a negatively charged mesh of proteoglycans, glyco-

saminoglycans, glycoproteins and glycolipids on the

luminal surface of vascular endothelial cells. Particu-

larly, the endothelial glycocalyx harbors a wide array
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of enzymes and proteins, e.g. endothelial nitric oxide

synthase, extra cellular superoxide dismutase, angio-

tensin converting enzyme, anti-thrombin III, lipopro-

tein lipase, hepatic endothelial lipase, apolipoproteins,

growth factors, and chemokines, that contribute in

regulation of leukocyte-/thrombocyte adherence and

with a principal role in plasma and vessel wall ho-

meostasis.

The first electron micrographs revealed a small ir-

regular shaped layer extending approximately 50- to

100 nm into the vessel lumen [15]. Subsequent ap-

proaches with varying perfusate contents or fixatives

revealed stained structures on endothelial cell sur-

faces throughout diverse microvascular beds, arterial-

and venular macrovessels with large variations in di-

mension and appearance [2, 3, 10, 25, 28, 34]. These

studies, especially when specific approaches were ap-

plied that stabilize anionic carbohydrate structures to

prevent loss- and or collapse of these structures, gave

evidence for a thick endothelial surface layer (Fig. 1).

Intravital microscopy studies on cremaster muscle

showed dramatic differences between microvascular-

and systemic hematocrit [13], that could be abrogated

upon enzymatic treatment of the microvascular net-

work with heparinase or hyaluronidase [7, 11]. By

comparing the width of the plasma column filled with

fluorescein-labeled dextran to the luminal endothelial

cell boundaries, evidence for a 0.4- to 0.5 µm thick

continuous endothelial cell surface layer was pro-

vided [31]. Based on these observations, theoretical

studies predicted a glycocalyx thickness of 0.5- to 1.0 µm

accounting for the observed variations in red-cell mo-

tion through the micro vessels and the discrepancy be-

tween in vivo and in vitro estimates of resistance to

blood flow [6, 8, 24]. Such an unexpectedly large di-

mension of the glycocalyx exceeds the dimensions of

the endothelium and adhering leukocyte adhesion

molecules several fold and argue for a protective role

of the glycocalyx dimension under physiological con-

ditions of the blood vessel. Indeed, various studies ob-

served alterations in glycocalyx dimension upon

ischemia/reperfusion [3], hypoxia [34], high-density-

[21] and low-density lipoprotein [4, 30], and varia-

tions in wall shear stress [10, 27].

Endothelial glycocalyx and vascular

permeability

Vascular barrier properties determine transport of

fluid to and from the interstital space given a balanced

equilibrium between opposing oncotic and hydro-

static pressures according to the Starling principle

[26]. Consequently, there is a continuous turnover of

fluid in the body, caused by the fact that fluid is fil-

tered from blood to tissues at the arterial end of the

circulation and reabsorbed at the venous end. Excess

fluid not taken up at the venous end is removed from

the tissue by the lymphatics.

One of the main permeability parameters that can

be obtained is the hydraulic conductivity (Lp), i.e. the

vessel wall permeability to water. In microvascular

beds within the various organs, a very large variability

in the Lp can be found as a result of the involvement of

coordinated functions of a host of players to optimize

blood flow and match exchange of solute flux with tis-

sue demand. These variations are observed between the

various vessel types involved (arterioles, capillaries

and venules), up to the individual capillary level.

However, it was argued that when the molecular

sieving properties of the capillary wall are determined

by a fiber matrix, covering all endothelial channels

and filling intracellular boundaries, molecular selec-

tivity would remain constant. This was hypothesized

as the fiber matrix concept developed by Curry and

Michel [5]. In this concept it was suggested that the

local protein concentration gradient which is neces-

sary for the colloid osmotic pressure (or oncotic pres-

sure), is localized across the glycocalyx and not be-

tween the plasma and tissue underlying the endothe-

lium. Thus, the endothelial surface glycocalyx
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maintains the fluid balance between blood and tissue

that results in a balance between absorption and filtra-

tion of water. This hypothesis was confirmed by the

remarkable similarity of protein permeability and re-

flection coefficient, i.e. rejection of molecular pas-

sage, in fenestrated and in continuous capillaries in

spite of their differences in filtration coefficient and

ultrastructure [23]. Recently, this was further illus-

trated by very similar estimates of the permeability

parameter in relation to the presence of charge-

selective properties between peripheral- and glomeru-

lar capillaries, although the renal glomeruli are the

body’s most active filtration units, producing about

180 liters of primary urine per day with a minimal

loss of proteins [19].

Since glomerular capillaries consist of fenestrated

endothelial cells, whereas peripheral endothelial cells

are predominantly of the continues type, it appears

that in most vascular beds the glycocalyx behaves as

a molecular filter which allows the free exchange by

convection and diffusion, of water, ions and small hy-

drophilic solutes between the plasma and tissue

spaces, but limits the passage of especially charged

macromolecules. These findings argue for equal se-

lective permeability properties throughout the various

vascular networks and organs, predominantly depend-

ent on the high plasma concentration of negatively

charged albumin the main contributor in oncotic pres-

sure.

Endothelial glycocalyx in micro-versus

macro vasculature

Studies in both micro- and macro vasculature demon-

strated similarity in glycocalyx constituents such as

hyaluronan [10, 11, 28], release of NO [9, 17, 35], and

presence of endothelial cell super oxide dismutases

(ec-SOD) [16], which are all involved in vascular ho-

meostasis and protection against damage. Collec-

tively, these observations are of particular interest

since altered vascular permeability, attenuated NO-

bioavailability and redox dysregulation are amongst

the earliest characteristics of atherogenesis [14].

In spite of these observations, it has proven diffi-

cult to show direct relevance of the glycocalyx as

a vasculoprotective paradigm for larger vessels. The

latter is predominantly due to the fact that glycocalyx

research has traditionally focused at the microvascu-

lature, in which atherogenesis does not occur. How-

ever, several studies have emphasized that the rele-

vance of the glycocalyx is not confined to smaller

vessels [3, 27]. Thus, van Haaren et al recently visual-

ized a thick endothelial glycocalyx in larger arteries in

rats [29]. Interestingly, small glycocalyx dimensions

that correlated significantly with local thickening of

the intimal layer (Fig. 2) and is accompanied by sig-

nificant swelling of the subendothelial matrix, lends

direct support to a potential role of glycocalyx pertur-

bation in making low-shear regions more susceptible

to atherogenesis [27, 33]. The glycocalyx in larger

vessels has also been shown to decrease extravasation

of low density lipoprotein (LDL) particles into the su-

bendothelial space [1, 12]. Amongst others, these data

imply that also in the macro vasculature the glycoca-

lyx adds towards the vasculoprotective properties of

the vessel wall.

Glycocalyx volume assessment in humans

To date, direct visualization of endothelial glycocalyx

in humans has been unsuccessful, mainly due to the

fact that the endothelial glycocalyx is a very delicate
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structure depending critically on the presence of flow-

ing plasma [22]. Since the endothelial glycocalyx pro-

vides limited access to plasma macromolecules and

erythrocytes, the best way to measure the endothelial

glycocalyx in humans is to compare intravascular vol-

umes using a glycocalyx impermeable tracer, i.e. la-

beled autologous erythrocytes [20, 31] and a glycoca-

lyx permeable tracer such as neutral Dextran 40 (MW

40 kDa), exemplified in Fig. 3. At present, such meas-

urements in patients with type 1 diabetes revealed

a profound reduced systemic glycocalyx volume com-

pared with healthy age and sex-matched controls [18].

Visualization of the capillary endothelial

glycocalyx in humans

The abovementioned reductions in systemic glycoca-

lyx volume in diabetes patients were confirmed by re-

ductions in glycocalyx dimension in individual capil-

lary blood vessels. Such estimates of individual capil-

lary glycocalyx dimensions were obtained using

orthogonal polarization spectral (OPS) imaging of the

sublingual microcirculation [18]. Images of capillary

red cell columns were obtained in healthy control

(Fig. 4, left panel) and type 1 diabetic subjects. The

change in capillary red cell column width following

capillary leukocyte passage (Fig. 4, center and right

panels) can be used to provide an estimate of the cap-

illary dimension by comparing the anatomic capillary

diameter, i.e. the red cell width while glycocalyx is

still compressed (Fig. 4, right panels), with the func-

tional perfused capillary diameter, i.e. the red cell col-

umn width before leukocyte passage (Fig. 4, center

panels). In line with the systemic glycocalyx volume

measurements, capillary glycocalyx dimensions were

reduced by 40% in diabetic patients.

Conclusions

Located at the interface of flowing blood and the vas-

cular endothelial lining, currently available evidence

shows that the endothelial glycocalyx exerts a wide

array of functions to ensure maintenance of interstitial

fluid balance and facilitating an anti-atherogenic vas-

cular wall surface. Glycocalyx disruption is accompa-

nied by enhanced sensitivity of the vasculature to-

wards atherogenic stimuli which emphasizes that not

only the composition of the glycocalyx is important in

facilitating these properties but that the contribution

of its physical dimension and barrier properties

should also be considered. In addition, similarities

found between micro-verses macro vascular beds sug-

gest common structural properties throughout the en-

tire vascular bed that might be of importance in pro-

tective strategies against vascular perturbation.
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Collectively, these data lend support to a potential

role of the glycocalyx as a first barrier in protection

against atherogenic insults. Therefore, it will be a chal-

lenge to determine whether glycocalyx volume meas-

urement, systemically or at the individual capillary

level, is a feasible surrogate marker for cardiovascular

disease, and whether it may prove to be of use to as-

sess the impact of novel interventions aimed at glyco-

calyx restoration on atherosclerosis progression.
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