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Antinociceptive effect of lidocaine in rats
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Abstract:

Lidocaine, a local anesthetic drug, exerts its effect by blocking sodium channels in peripheral sensory neurons. It is commonly used
in clinical practice as a local anesthetic drug. This study was undertaken in order to determine the effect of lidocaine on sodium
channels in neurons of the central nervous system and its modulatory effect on the pain perception in rats. Therefore, the effect of
direct lidocaine administration icv on pain perception in rats exposed to noxious thermal stimuli was determined. A significant
long-lasting antinociceptive effect of lidocaine injected at the doses ranging between 0.065–1.3 µmol (17.5–351 µg, respectively)
was documented. It was concluded that intracerebral administration of sodium channel blockers might be a useful method in the
study of pain perception in the brain.

Keywords:

pain, lidocaine, intracerebroventricular administration, rat

Abbreviations: icv – intraventricular (into the lateral brain
ventricle), ip – intraperitoneal, iv – intravenous

Introduction

The isoforms of voltage-gated sodium channels are
abundantly distributed in neurons of the peripheral
nervous system, in the spinal cord and in different
brain areas [2, 3] as well as in glial cells [8].

Lidocaine, a local anaesthetic drug, is a sodium
channel blocker, as it blocks voltage-gated sodium-
channels [10, 14, 25] and, to a much lesser degree, K+

and Ca+ channels [26]. Local anesthetics bind to the
inner pore of sodium channels [6]. Lidocaine binding
to the inner vestibule of the Na+ channel inhibits the
process of ultra-slow inactivation of this channel act-
ing as a “foot in the door” in the inner vestibule [21].

Moreover, it has been postulated that lidocaine also
binds to fast-inactivated sodium channels [13]. These
mechanisms stabilize the open state of voltage-
dependent sodium channels in the central nervous
system [5]. Apart from the most frequent application
of lidocaine for topical anesthesia, also iv administra-
tion of this drug exerted analgesic effect in different
kinds of pain [22, 24]. A clinical case of a patient suf-
fering from persistent central pain after encephalitis
who had long-term pain relief after several repeated iv

infusions of lidocaine was reported [4] and the role of
the posterolateral thalamus in the mechanism of lido-
caine effect was postulated [4]. Moreover, it was dem-
onstrated that iv lidocaine had an evident inhibitory
effect on spinal neurons excited by colorectal disten-
sion in rats [17]. The probable mechanism of this ef-
fect was a lidocaine-induced decrease in responsive-
ness of the colorectal distension-sensitive receptors in
the spinal neurons [17]. But ip injection of lidocaine
was without any effect on mechanical or cold allo-
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dynia in the model of neuropathic pain in rats [7].
There are only a few reports on the effect of lidocaine
on responsiveness of neurons mediating pain percep-
tion in the rat brain, and the antinociceptive effect of
this drug [15].

The present study was undertaken in order to determine
the effect of direct lidocaine administration icv on pain per-
ception in rats exposed to noxious thermal stimuli.

The results of the present study may demonstrate
a possibility of pain treatment by lidocaine admini-
stration directly icv, therefore, by blocking sodium
channels in neurons of the brain.

Materials and Methods

The protocol of this study was approved by the ethical
committee of the Medical University of Silesia (L.dz.
NN-0-43-57/99).

Animals

The studies were performed on adult (280–320 g)
male Wistar rats obtained from the Animal Farm of
the Medical University of Silesia in Katowice. The
animals were kept under 12 h light : 12 h dark cycle
(light from 6 am to 6 pm) with free access to standard
food and water.

Experimental protocol

A week before the experiments polyethylene cannulas
(TOMEL, Tomaszów Mazowiecki, Poland) were im-
planted into the lateral brain ventricle using the same
technique as in our previous study [19, 20]. Rats were
anaesthetized with chloral hydrate (POCH, Gliwice,
Poland) anesthesia (300 mg/kg, ip) and polyethylene
cannulas (TOMEL, Tomaszów Mazowiecki, Poland)
were introduced icv at the following coordinates:
2 mm to the right from the sagittal suture, 2 mm be-
hind the coronary suture at a depth of 4 mm from the
surface of the skull, and were fixed to the skull bones
with glue Duracryl (Spofa Dental, Prague, Czech Re-
public), and were allowed for a recovery and adapted
to handling by an experimenter.

On the day of the experiment, every dose of lido-
caine hydrochloride (Jelfa, Jelenia Góra, Poland) dis-
solved in a constant volume of 5 µl of 0.9% NaCl was

administered icv using a Hamilton microsyringe.
Antinociceptive effect was determined by two meth-
ods: by the hot-plate test [18] and tail immersion test
[11] before and at the following time intervals: 5, 15,
30, 45, 60, 90, 120 min and 24 h after the injection.
The temperature of the hot-plate and the hot water in
the tail immersion test was 56°C. Nociceptive reac-
tion of animals in the hot-plate test was expressed as
paw-licking and limb withdrawal [18], while in the
tail immersion test, the tail withdrawal from container
with hot water was recorded [11].

The determined latency time for each animal was
converted to the percent of analgesia according to the
formula:

where: Tx – is the individual latency time determined
at appropriate intervals after lidocaine administration,
To – individual latency time determined before lido-
caine injection, Tmax – maximal latency time was 20 s
in the hot-plate test and 10 s in the tail immersion test.

At the end of the experiment, the rats were sacri-
ficed by chloral hydrate overdosing (900 mg/kg, ip),
and the placement of the tips of the cannulas was con-
trolled by icv injection of Indian ink solution and vis-
ual inspection of the lateral brain ventricle.

Data were subjected to ANOVA and the post-hoc

Dunnett test (significance p < 0.05). All these experi-
ments were performed in accordance with guidelines
for investigations of experimental pain in conscious
animals [27].

Results

Lidocaine injected icv at doses of 0.065; 0.13; 0.65
and 1.3 µmol (17.55 µg, 35.1 µg, 175.5 µg, 351 µg,
respectively) exerted at all doses uniformly evident
antinociceptive effect in rats, lasting 120 min, as de-
termined by means of the tail immersion test (Fig. 1).
On the other hand, significant antinociceptive effect
of lidocaine determined by the hot-plate test was ob-
served at the same time intervals after its icv admini-
stration at the dose of 0.13 µmol (Fig. 2). The lower
dose of lidocaine 0.65 µmol icv (175.5 µg) induced
a significant antinociceptive effect only 30 and
45 min after injection (Fig. 2), while such significant
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effect of this drug injected icv at the dose of 1.3 µmol
(351 µg) was observed at 30 and 60 min after admini-
stration (Fig. 2).

Discussion

The results presented here indicate that icv admini-
stration of lidocaine induced prominent antinocicep-
tive effect in rats. This effect appeared immediately
after lidocaine administration and was long-lasting.
This effect was demonstrated in both tests used, de-
spite that it was more pronounced in the tail immer-
sion test.

Both these tests have been used to assess rat re-
sponse to a painful thermal stimulus. This effect was
not dose-dependent as the lower used lidocaine dose
of 0.065 µmol and the 20-fold higher dose of
1.3 µmol induced similar significant antinociceptive
effect in the tail immersion test. The enhancement of
the range of used lidocaine doses would indicate
a dose-dependent effect. However, higher icv doses of
lidocaine were shown to induce convulsive effect in
rats which makes impossible to determine the no-
ciceptive reaction. The dose of 1.3 µmol icv is
a threshold convulsive dose in rats [Plech A. and Gi-
biec S., unpublished data]. Moreover, the lower dose
of 0.065 µmol icv seems to be a threshold antino-
ciceptive dose as it was ineffective in the hot plate
test. Further study is necessary to define lidocaine ef-
fect. The lack of the dose-dependent lidocaine effect
may be, also due to other lidocaine effects. It was
found that it interacts with central dopaminergic re-
ceptors in rats. However ip injection lidocaine at the
dose of 60mg/kg did not induce changes of the relase
of DOPAC in rats striatum, determined in vivo using
a differential pulse voltametry method [23]. The de-
pletion of brain amines, norepinephrine and dopa-
mine, increased susceptibility to seizure activity in
rats and mice [12]. Pretreatment of rats with inhibitors
of monoamine synthesis, �-methylp-tyrosine and p-
chlorophenylalanine increased the threshold for
lidocaine-induced convulsions [1]. Moreover, Gibiec
and Plech demonstrated that central D1 dopamine re-
ceptors were involved in the neurotoxic convulsive
effect of lidocaine, as lidocaine-induced convulsions
were completely prevented by a D1 antagonist SCH
23390 [9]. But at present, there are no data on the role

of central monoamines in the mechanism of
lidocaine-induced analgesia. Lidocaine injected icv

principally modulates activity of brain neurons ex-
pressed as a prominent, long-lasting antinociceptive
effect because it penetrated from the lateral brain ven-
tricle into adjacent parts of the brain, therefore, also
into the posterolateral thalamus. This nucleus is a
common target of ascending pain pathways. Cahana
et al. [4] demonstrated by positron emission tomogra-
phy a relative hypoactivity of the left posterolateral
thalamus of a patient with chronic neuropathic pain.
Iv administration of lidocaine caused pain relief with
concomitant disappearance of thalamic hypoactivity
[4]. Thus, the result of the present study indicates the
central mechanism of lidocaine-induced analgesic ef-
fect. As a primary mechanism of action of lidocaine,
like of other anesthetics, is the blockade of sodium
channels [10, 14, 16, 25], one can infer that the
lidocaine-induced blockade of sodium channels
spreads in neurons of different brain areas distinctly
depressing their excitability increased by peripheral
noxious thermal stimuli, which is manifested as
antinociceptive effect.

Conclusion

The obtained results indicate that intracerebral ad-
ministration of sodium channel blockers may be a use-
ful method in the study of the mechanism of pain per-
ception in the brain.
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