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Abstract:

The overall picture of platelet abnormalities in diabetes mellitus (DM), including altered adhesion and aggregation, is

hypersensitivity of diabetic platelets to agonists. “Primed” diabetic platelets respond more frequently even to subthreshold stimuli,

sooner become exhausted, consumed and finally hyposensitive, thus contributing to accelerated thrombopoiesis and release of

‘fresh’hyperreactive platelets. In diabetes disturbed carbohydrate and lipid metabolism may lead to physicochemical changes in cell

membrane dynamics, and consequently result in altered exposure of surface membrane receptors. These phenomena, together with

increased fibrinogen binding, prostanoid metabolism, phosphoinositide turnover and calcium mobilization often present in diabetic

patients, contribute to enhanced risk of small vessel occlusions and accelerated development of atherothrombotic disease of

coronary, cerebral and other vessels in diabetes. The paper concentrates on the role of dynamic, physico-chemical properties of

platelet membrane lipid bilayer, as a major determinant of platelet hypersensitivity in diabetic patients.

As a pharmacological response to platelet hypersensitivity in DM, making a major contribution to enhanced risk of thromboembolic

macroangiopathy, and consequently enhanced morbidity and mortality in diabetic individuals, we have a variety of antiplatelet agents, and

acetylsalicylic acid (ASA) is no doubt most commonly used world-wide. Every-day clinical practice shows that antiplatelet pharmacological

approach may not always be efficient enough in people with diabetes. Although we are at the very beginning of complete understanding of

so-called ‘aspirin-resistance’, several potential molecular mechanisms of this phenomenon in diabetes have been evidenced.
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Abbreviations: ADP – adenosine diphosphate, ASA – acetyl-

salicylic acid, [Ca��]� – concentration of intracellular calcium,

COX (COX-1, COX-2) – cyclooxygenase (1 or 2), DM – dia-

betes mellitus, 16-DOXYL-Ste – spin label 16-doxylstearic

acid, 5-DOXYL-Ste – lipophilic spin label 5-doxylstearic acid,

EDTA – ethylenediaminotetraacetate, EGTA – ethylene

glycol-O,O’-bis-[2-amino-ethyl]-N,N,N’,N’-tetraacetic acid,

ESR – electron spin resonance, Fg – fibrinogen, GPIIb–IIIa –

glycoprotein complex IIb–IIIa, integrin ������ (fibrinogen

receptor), h��/h� ratio – parameter read from ESR spectrum of

a lipophilic spin label, proportional to lipid bilayer fluidity,

H-12-V (HHLGGAKQAGDV) – dodecapeptide His-His-Leu-

Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (corresponding to the

fibrinogen � chain C-terminus), MPV – mean platelet volume,

RGDS – tetrapeptide Arg-Gly-Asp-Ser, TG – thapsigargin,

t-PA – tissue-type plasminogen activator, TRAP – thrombin re-

ceptor activating peptide (SFLLRNPNDKYEPF), TSP – trom-

bospondin, Tx (TxA�/TxB�) – thromboxane A�/B�
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Introduction

The peculiar constellation of thrombotic factors and

the sustained hypercoagulable state in diabetes melli-

tus leads to increased mortality and morbidity in this

group of patients [12, 83]. Vascular inflammation, en-

dothelial dysfunction associated with hyperglycemia

and hyperinsulinemia, impaired fibrinolysis and in-

creased coagulation factors, as well as abnormal

blood platelet function, are typical for diabetes. Such

a complex array of predisposing factors contributes to

the overall increased thromboembolic incidence and

development of arteriosclerosis in diabetic patients

[13]. Typically, numerous of these risk factors may be

present long before a diagnosis of diabetes mellitus

(DM) is established. Commonly, the abnormalities of

vascular endothelium are regarded as an important de-

nominator of thrombosis-oriented modifications of

blood platelets, coagulation and fibrinolysis, all the

major factors underlying high prevalence of vascular

events in diabetes [12–14, 77].

Facts on platelet abnormalities are coinciding

in showing platelet hypersensitivity in diabetes

The overall picture of platelet abnormalities in DM,

including altered adhesion and aggregation, is hyper-

sensitivity of diabetic platelets to agonists. Platelets in

diabetic subjects appear to be in an activated state

even in the absence of vascular injury, as evidenced

by greater expression of the fibrinogen-binding glyco-

protein IIb/IIIa receptor, which constitutes the final

common pathway of platelet activation and allows for

cross-linking of individual platelets by fibrinogen

molecules and formation of thrombus. “Primed” dia-

betic platelets respond more frequently even to

subthreshold stimuli, sooner become exhausted, con-

sumed and finally hyposensitive, thus contributing to

accelerated thrombopoiesis and release of ‘fresh’ hy-

perreactive platelets [87].

Diabetic platelets are hypersensitive to agonists in

vitro, and alterations in a number of mechanisms in-

volved in platelet activation occur in these platelets,

which could contribute to their hypersensitivity. Plate-

lets obtained from diabetic subjects show increased

adhesiveness and an exaggerated aggregation, both

spontaneous and in response to stimulating agents.

Also, in DM of either type, the increased populations

of circulating platelets expressing activation-dependent

adhesion molecules, such as activated glycoprotein

complex IIb–IIIa (GPIIb–IIIa), thrombospondin, lyso-

somal GP53, or, perhaps most importantly, P-selectin

(GMP-140), have been identified. The causes for the

enhanced platelet activation in diabetes are multifold:

altered exposure and/or abundance of glycoprotein re-

ceptors for agonists and adhesive proteins on the

platelet surface, increased fibrinogen binding, de-

creased membrane fluidity, enhanced arachidonate

pathway activation with increased thromboxane A2

formation, and increased phosphoinositide turnover

leading to increased protein phosphorylation, en-

hanced inositol trisphosphate (IP3) production, and

subsequently accelerated Ca2+ mobilization or a com-

bination thereof [105]. The noteworthy implication of

platelet hyperreactivity in diabetes are also their low

threshold for activation with agonists and altered ago-

nist profiles (e.g. glycated matrix ligands). Both seem

of the utmost importance for the overall role of platelets in

diabetic vascular complications and prothrombotic state in

diabetic individuals [31, 100]. These phenomena contrib-

ute to enhanced risk of small vessel occlusions and acceler-

ated development of atherothrombotic disease of coronary,

cerebral and other vessels in diabetes [12, 13, 25].

What makes diabetic platelets hypersensitive?

In an attempt to answer the question in the title, two

types of metabolic disorders, inherently associated

with diabetic state, are worth considering:

(a) dyslipidemia and altered lipid profile of both

blood plasma and cellular structures, and

(b) hyperglycemia, with the consequent non-enzymatic

glycosylation of biomacromolecules.The important

implication of the above is that in DM a disturbed car-

bohydrate and lipid metabolism may lead to altered

physico-chemical properties of cell membranes, and

physicochemical changes in cell membrane dynamics

may further result in altered exposure of surface

membrane receptors [87, 90, 97].

Numerous of platelet alterations in diabetes, in-

cluding calcium release from intraplatelet storage

pools and/or its transport across platelet membranes,

are related to the alterations concerning platelet mem-

brane components [86, 90, 92, 95, 110, 111]. The al-

tered biophysical state of platelet membrane compo-

nents in DM may thus be one of the major determi-

nants of platelet hypersensitivity and hyperfunction

and may contribute to impairments in various meta-

bolic pathways, like intensified calcium mobilisation
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and accentuated thromboxane A2 synthesis and re-

lease [3, 90, 114].

Transitions in membrane lipid bilayer fluidity

are physiological phenomena

Membrane lipid bilayer fluidity plays an important

role in cellular functions, and blood platelets are not

unique in that respect [58]. Overwhelming evidence

has accumulated confirming that membrane fluidity is

involved in the control of an increasing number of

physiological processes and that derangements of nor-

mal fluidity may occur in some pathological states

[40, 63, 88]. The major effect of lipid fluidity is on the

dynamics of functional units which are embedded in

the lipid matrix. Membrane proteins are mobile in the

lipid environment and their lateral diffusion is af-

fected by both the effects of protein crowding and to

the constraints from an aqueous matrix [7, 63]. While

variations in the fluid nature of the hydrophobic core

of the membrane may directly affect various trans-

membrane events, other changes within membrane,

such as protein-protein spacing or receptor position

within the membrane, may also be important [7, 28,

37, 63]. When the lipid fluidity is decreased, the new

equilibrium position of an overall weaker lipid-

protein interaction but with correspondingly greater

protein-water association may become more optimal,

in which membrane proteins may be displaced to-

wards the aqueous phase on either side of the mem-

brane [28, 64]. Although the correlation between lipid

fluidity and the rate of lateral diffusion can be only

partially accounted for, the lipid microviscosity be-

comes the major retarding force for rotational diffu-

sion of proteins in lipid matrix [63]. Numerous re-

ported changes in protein projection could be ac-

counted for by such displacement mechanisms.

Moreover, ligand binding to a membrane protein (i.e.

ligand-receptor interaction) has also been suggested

to induce a modulation of charge distribution [102].

Furthermore, the immediate lipid fluidity around the

occupied receptor may alter, thus affecting unoccu-

pied receptors and the resultant changes in the expo-

sure of both occupied and unoccupied receptors may

lead to local membrane aggregations [57, 63]. Over-

all, the modulation of membrane lipid fluidity may

determine the apparent degree of accessibility of re-

ceptors and their response to fluidity changes. In

long-term or sustained changes of membrane lipid

microviscosity (as in atherosclerosis, diabetes or dur-

ing aging), the total number of receptors may also

change by various metabolic processes [45, 49, 63, 107].

Mobility of membrane phospholipids deter-

mines projection of membrane proteins

Specific association between a membrane receptor

and its ligand is generally of a high affinity and medi-

ates significant conformational changes in the occu-

pied receptors, which can even alter the packing den-

sity of the neighbouring lipid bilayer. The resulting

fluidity changes are expected to fade away from the

occupied receptor, but opposing fluidity gradients

from other occupied receptors may direct the system

to a new steady-state level of lipid fluidity. The modu-

lation of lipid fluidity in the vicinity of an occupied

receptor raises the possibility that the accessibility

and turnover of adjacent receptors may be affected by

the occupied receptors [57, 63] (Fig. 1). Based on

what was discussed above, there is no doubt at present

that alterations in membrane lipid fluidity, and the

consequent new “equilibrium” states of functional

membrane receptors/proteins may have a direct im-

pact on platelet intracellular signalling. The precise
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Fig. 1. Mechanisms underlying hypercholesterolaemia-mediated
platelet hypersensitivity. Reduced platelet membrane lipid fluidity
may be a consequence of altered lipid composition in platelet mem-
branes, e.g. increased cholesterol content. Cholesterol accumula-
tion in membranes is dependent on plasma lipid profile and may be
mediated by the interaction of platelets with some low-density lipo-
protein (LDL) fractions, mainly oxidised LDL (ox-LDL). The latter fa-
cilitate cholesterol transfer and activate platelets. Increased mem-
brane cholesterol to phospholipid ratio makes membrane receptors
(R) less mobile in lipid environment, affects their positioning and in-
duces their displacement toward aqueous environment. Enhanced
receptor projection promotes ligand (L) binding. Changes in mem-
brane lipid fluidity in the vicinity of occupied receptors affects also
unoccupied receptors that leads to receptor clustering. Formation of
receptors clusters (‘aggregates’) (RC), that may be further stabilized by
cytoskeleton proteins (cytoskeleton), leads to increased platelet sensi-
tivity to agonists and facilitates platelet aggregation and/or adhesion



relation between platelet membrane fluidity and sig-

nal transduction in human platelets remains indefin-

able, however, we have evidence that the fluidity of

platelet plasma membranes affect the responsiveness

of blood platelets [58, 67, 90, 92, 95, 110–112]. The

belief that impaired macromolecular interactions in

platelet membranes, associated with the reduced dif-

fusion of various membrane components, modulate

cell receptor-mediated signal transduction [63], is sup-

ported by the observations suggesting that the lack of dy-

namic lipid changes following receptor-ligand interac-

tions results in defective transmembrane signalling [7].

The evidence supporting the crucial role of mem-

brane lipid dynamics in triggering the initial steps of

signal transduction in activated platelets comes essen-

tially from two types of research: (a) studies on the

modulation of membrane-associated phenomena by

dietary lipid composition, f.i. in terms of cholesterol

content in lipid bilayer, and (b) effects of anesthetics

and organic solvents on membrane fluidity.

Basic implications of altered platelet membrane

fluidity in diabetes

The lipid fluidity of platelet membranes may be influ-

enced by either the altered composition of membrane

lipids, the altered structure and conformation of mem-

brane proteins embedded into lipid matrix, or the al-

tered lipid-protein interactions. While the former is

likely to be modulated by dietary lipids, the latter may

be associated with the binding of ligands to mem-

brane receptors. In fact, the evidence has been pre-

sented which demonstrates that enrichment of cellular

membranes with cholesterol, that reduces membrane

lipid bilayer fluidity, causes an increase in the expo-

sure of certain membrane proteins to the aqueous en-

vironment [6]. Associated with such changes in mem-

brane lipid composition, blood platelets have been

demonstrated to become more sensitive to aggrega-

tion induced by adrenalin or adenosine diphosphate

(ADP) [35, 67, 68, 73]. On the other hand, there are

reports showing that the interaction of protein and

peptide ligands with platelet membrane receptors

leads to the changes in the organization of membrane

components, and such displacements in membrane

protein projection could be mediated by the altera-

tions of membrane lipid fluidity [45, 58, 67, 96–98].

In DM, the disease with a peculiar metabolic back-

ground, the following implications of altered cell

membrane fluidity seem crucial:

(a) as the fluctuations in lipid bilayer fluidity are able

to redirect membrane protein components to thermo-

dynamically new equilibrium state of protein projection

and accessibility, some protein domains, previously bur-

ied in hydrocarbon core may become newly exposed,

(b) thus, new potential targets for non-enzymatic pro-

tein modifications (glycosylation, carbonylation, ace-

tylation and so on) become exposed,

(c) as far as numerous platelet proteins function as re-

ceptors, it means more exposed membrane receptors

with potentially extended overall accessibility to

ligands,

(d) more exposed platelet membrane receptors make

an important contribution to platelet hypersensitivity.

Advanced platelet protein glycation in diabetes

is associated with reduced platelet membrane

fluidity

Much of the observed hyperaggregability of diabetic

platelets results from the interactions of platelets with

diabetic plasma proteins and this effect appears to be

proportional to the extent of glycosylation of mem-

brane and plasma proteins [19, 27, 32, 36, 110, 112].

A chronic hyperglycemia, and the resulting increased

nonenzymatic glycosylation of platelet membrane

proteins, have been suggested as major determinants

underlying platelet hypersensitivity [33, 87, 105].

Also, the relationship between platelet protein modifi-

cation by glucose and the reduced membrane lipid

fluidity in diabetes has been evidenced in some stud-

ies [92, 95, 110–112]. Several reports have evidenced

that an explanation for the reduction in membrane

lipid fluidity in platelets from diabetic patients may

relate to the increased nonenzymatic glycosylation of

platelet membrane proteins [110–112]. The mecha-

nism(s) of such a relation seem more even clear con-

sidering that the nonenzymatic attachment of glucose

moieties to platelet membrane proteins most likely in-

duces a steric hindrance in the hydrocarbon core of

the membrane lipid bilayer. The rigidisation of plate-

let membranes leads to the more viscous hydrophobic

core of the lipid matrix, in which membrane proteins

become displaced towards the aqueous phase on ei-

ther side of the membrane [28, 63, 104]. Hence, hy-

persensitivity of diabetic platelets to aggregating

agents could potentially result in the increased acces-

sibility of platelet membrane receptors in diabetic

platelets [87, 90, 92, 95, 97], as it was revealed in the

case of platelet fibrinogen receptors [48, 95].
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Numerous reports concern devastating role of hy-

perglycemia as well as the resulting protein glycation

in altering platelet functions. These studies point to

positive associations between either hyperglycemia or

induced protein glycation and the impaired platelet

function, mainly increased platelet aggregability and

release of intraplatelet granule contents [33, 38].

Also, the reports on preventive effects of dietary or

pharmacological glucose-lowering strategies in the

improvement of platelet functions are worth mention-

ing [72]. Whereas various platelet abnormalities, such

as hyperaggregability, hypersensitivity to agonists or

increased circulating platelet activation have been

correlated with hyperglycemia [32, 92, 95, 97, 110,

112], the normalization of platelet hyperfunction in

diabetes has been observed as a consequence of near-

normoglycemia [24].

Release of Ca2+ and P-selectin in blood plate-

lets is hampered by procaine

The modulators of membrane lipid fluidity have sev-

eral features in common, which seem to be of a cru-

cial importance in affecting platelet membrane dy-

namics:

(a) they considerably affect the compactness of phos-

pholipid molecules in platelet membrane lipid bilayer,

and thus lead to more or less restrained lipid mobility,

(b) accordingly, they may directly modulate various

transmembrane events, such as protein-protein spac-

ing or receptor position within a membrane,

(c) they influence lipid-protein interactions within

membrane bilayer, and this concerns particularly

boundary lipid molecules,

(d) they remain efficient regardless of whether they

act as ‘fluidizers’ or ‘rigidizers’ of membrane lipid bi-

layer [22].

Effects of local anesthetics on the impairing

membrane-associated signalling has been well docu-

mented, and their protective effects result from the

constellation of physico-chemical changes in mem-

brane lipid bilayer, including destroyed lateral phase

separation in the region of protein-lipid interface,

weakened association forces between water and mac-

romolecules, a release of bound water molecules

or/and direct interactions with membrane components

[22]. Apart from above described non-specific bio-

physical effects [93], the modulators of platelet mem-

brane fluidity might specifically influence some

membrane-associated platelet components, crucial for

platelet signal transduction, like protein kinase C or

adenylate cyclase [66, 114].

The local anesthetic, procaine, not only rigidized

platelet membranes [reduced electron spin resonance

(ESR) h+1/h0 ratio of lipophilic spin label 5-doxyl-

stearic acid (5-DOXYL-Ste)] and hampered the re-

lease of intraplatelet granules [reduced expression of

P-selectin in platelets stimulated with either ADP,

thrombin receptor activating peptide (TRAP) or

thrombin], but also reduced Ca2+ mobilization from

intraplatelet storage pools. The latter was demon-

strated in both the platelets agonized with 15 µmol/l

ADP, where procaine hampered Ca2+ release from in-

traplatelet storage pools, and under conditions of poor

extracellular calcium, where procaine intensified cal-

cium removal in the presence of Ca2+ chelator, ethyle-

nediaminotetraacetate (EDTA)K2. The preventive ef-

fects of procaine on platelet degranulation and Ca2+

mobilization were related to procaine-mediated dislo-

cations of some membrane components, crucial in

triggering of platelet release and activation.

Procaine-induced distortions of lipid-protein interac-

tions are believed to generate a steric hindrance, inter-

fering with signal transduction, and thus leading to to

impaired mobilization of Ca2+ and other components

from platelet storage pools [91].

Reduced procaine’s ability to hamper platelet

activation in diabetes results from distorsions

in platelet membrane components

Conformational changes leading to enhanced calcium

mobilization may be considered a peculiar self-

perpetuating mechanism in a number of intracellular

events. Membrane-associated triggering of signal

transduction initiates calcium release from intraplate-

let storage pools. The rise in Ca2+ underlies further

changes in membrane lipid fluidity and membrane bi-

layer ‘order parameter’, because calcium itself acts as

a rigidizer in membrane lipid bilayer. Thereby the

fluctuations in Ca2+ concentration and/or flux of Ca2+

across platelet membrane may possibly facilitate fur-

ther Ca2+ mobilisation and platelet activation [90, 91],

and these effects could have consequences for the

general receptor functioning [26].

Majority of published data concerning calcium ho-

meostasis and mobilization in diabetic individuals are

rather consistent in showing: (i) increased platelet

[Ca2+]i in the resting state, (ii) higher Ca2+ mobiliza-

tion after stimulation with thrombin and ADP, entirely
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due to increased resting concentrations, (iii) increased

activity of Ca2+-ATPase, and (iv) reverse-mode acting

Na+/Ca2+ exchanger mediating Ca2+ influx [43, 55,

68, 90].

In spite of an existing controversy as to whether the

rigidification of plasma membranes during cell acti-

vation caused by an increase in [Ca2+]i is a primary or

late event, it is believed that the modulation of mem-

brane dynamics by calcium displacements might es-

sentially contribute to signal transduction [59, 63, 70,

90]. In the light of these findings, also the altered bio-

physical state of platelet membrane components in

DM that is regarded a crucial determinant of platelet

hyperfunction [97, 110–112], has been interpreted as

a factor contributing to the intensified calcium mobili-

zation in diabetic platelets [90]. We found that blood

platelets from diabetic humans remained less suscep-

tible to preventive effects of procaine, the agent ham-

pering calcium release from intraplatelet storage

pools (by up to 40%) and platelet degranulation. Con-

sequertly, diabetic platelets were more vulnerable to

stimuli facilitating cytosolic calcium mobilization

(ADP) in the presence of procaine or EDTAK2 (by

more than 40%) (Fig. 2). Both the increased intracel-

lular Ca2+ mobilization and higher levels of intracel-

lular free Ca2+ ([Ca2+]i) in the presence of procaine

corresponded to reduced platelet membrane fluidity in

platelets from diabetic patients [90]. This rather com-

plex array of experimental data clearly points that the

biophysical state of platelet membrane components in

DM is likely the crucial determinant of platelet hyper-

function and probably contributes to more intensified

Ca2+ mobilization in diabetic platelets. Also, the di-

minished preventive effects of procaine on platelet re-

lease reaction and Ca2+ mobilization in platelets from

diabetic patients may result from primary distortions

and/or dislocations of membrane components caused

by a diabetic state [89, 90].

Platelets in diabetes mellitus are more vulner-

able to releasers and more resistant to block-

ers of cytosolic Ca2+ mobilisation

Thrombospondin (TSP) is a soluble, adhesive glyco-

protein of blood platelet �-granules. Upon release, in

the presence of high levels of Ca2+ this molecule

binds to platelet surface membranes and to compo-

nents of nascent and mature clot [44]. Thus, it pro-

motes formation of large platelet aggregates and sta-

ble clot formation, and influences clot resistance to fi-

brinolysis [5]. Due to enhanced Ca2+ mobilisation and

generally augmented release of intraplatelet granules

in platelets of diabetic patients, TSP release and bind-

ing may be of particular relevance to prothrombotic

status in DM [54, 75, 77, 103].
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Fig. 2. Changes in [Ca��]
�
in Fura-2-loaded platelets isolated from type 2 diabetic patients and control healthy individuals. Procaine (10 mg/ml)

reduced release of calcium from ADP-activated isolated platelets loaded with Fura-2 (4 M, �
���

= 340/380 nm [free/bound], �
��

= 500 nm). In-
sert: procaine was less efficient to hamper ADP-stimulated Ca�� mobilization in diabetic platelets (p < 0.001) (left), and similar reduction in pre-
ventive effects on Ca�� mobilization was also observed for Ca�� chelator, EDTA (p < 0.05) (right) [90]



In the course of platelet activation TSP becomes re-

leased from intraplatelet granules and the ongoing

Ca2+ mobilisation and its traffic outside platelets fa-

cilitates TSP binding to platelet surface membranes.

Thus, Ca2+ mobilisation and release in diabetic plate-

lets support TSP binding in a double way: indirectly,

via enhancing Ca2+-depended cellular signalling, and

directly – via promoting the interaction of TSP with

its receptor(s) [103].

In healthy non-diabetic individuals thapsigargin

(TG, 1 µM), the inhibitor of Ca2+ sequestration by

dense tubular systems, elevated the binding of TSP to

surface membranes of TRAP-activated platelets (by

up to 50%, p < 0.001), whereas ethylene glycol-O,O’-

bis-[2-amino-ethyl]-N,N,N’,N’-tetraacetic acid (EGTA,

5 mM), the extracellular Ca2+ chelator, reversed this

effect (by up to 85%, p < 0.001). These effects were

less profoundly expressed in type 2 diabetic patients.

In both control and diabetic subjects, TG increased

the presentation of platelet membrane receptor for

TSP, glycoprotein IV (CD36), in platelets stimulated

with TRAP (p < 0.05), whereas EGTA lowered the

TRAP-stimulated expression of CD36. While the

EGTA-mediated inhibition of CD36 expression was

significantly stronger in healthy volunteers (41% vs.

32% resp., p < 0.05), TG-mediated activating effect

was higher in diabetic individuals (11% vs. 27%,

p < 0.05). When acting together, the suppresive ef-

fects of EGTA on TG-dependent Ca2+ mobilization

were much attenuated in diabetic patients (p < 0.05).

These observations clearly point out that platelets

from diabetic subjects seem more vulnerable to the re-

leasers of cytosolic Ca2+ and more resistant to the

blockers of [Ca2+]i mobilization.

Biophysical state of platelet membrane is cru-

cial determinant of platelet dysfunction in dia-

betes mellitus

In less fluid diabetic platelet membranes, protein

molecules embedded into the rigidised lipid bilayer

would acquire much less motional freedom to accom-

plish the possible rearrangements due to the ligand-

induced alterations in lipid-protein interactions [97].

Such a reduced lipid fluidity response of diabetic

platelet membranes implies hypersensitivity of dia-

betic platelets [87, 95, 97, 108, 110]. In the line of the

latter finding are the observations pointing that the

fluctuations in membrane lipid fluidity associated

with the interactions of natural ligands with platelet

surface membrane receptors are restrained in patients

with diabetes [97]. It has been suggested that much

hampered effects of membrane receptor ligands on

a lipid bilayer dynamics in diabetic platelets might

have resulted from the altered exposure of platelet

membrane proteins and the considerable rearrange-

ments in the lipid-protein interactions in more ‘rigid’

membranes of diabetic platelets [90, 97].

We monitored microenvironmental lipid bilayer

changes associated with the interaction of fibrinogen

and fibrinogen-derived peptides with blood platelet

membranes, using fluorescence quenching and ESR

technique. A dodecapeptide HHLGGAKQAGDV

(H-12-V), corresponding to the fibrinogen � chain

C-terminus and the tetrapeptide Arg-Gly-Asp-Ser

(RGDS), corresponding to fibrinogen A� chain se-

quence 572–575, induced the opposed changes in

platelet membrane lipid dynamics: whereas the first

had a fluidising effect and increased h+1/h0 parameter

of 5-doxylstearic acid and 16-doxyl- stearic acid (in-

creased mobilities of 5-DOXYL-Ste and 16-

DOXYL-Ste), the second acted as a rigidizer (lowered

mobilities of both spin labels) in platelet membrane

lipid bilayer. These effects remained consistent with

RGDS-mediated decrease and H-12-V-mediated in-

crease in membrane protein tryptophan exposure to-

wards the external membrane environment, as well as

the conformational changes due to mobilization/im-

mobilization of some membrane protein domains [in-

creased relative rotational correlation time (�c) of

4-(ethoxyfluorophosphinyloxy)-2,2,6,6-tetramethyl-

piperidine-1-oxyl (ethoxyfluorophosphinyloxy-TEMPO)

and increased hw/hs ratio (parameter proportional to

mobility of labeled protein domains) in the ESR spec-

trum of 4-maleimido-2,2,6,6-tetramethylpiperidine-

1-oxyl (maleimide-TEMPO)] (Fig. 3A) [96].

When monitoring the effects of selected platelet

ligands on the dynamics of membrane lipid bilayer,

we observed in patients with type 2 diabetes much

smaller reductions in the 5-DOXYL-Ste h+1/h0 ratio

upon the interaction of either RGDS peptide or

tissue-type plasminogen activator (t-PA), and much

less profound increase in this parameter in the pres-

ence of fibrinogen (Fg) or Fg-derived peptides con-

taining �-chain carboxy-terminal sequence H-12-V. It

means that the effects of various interacting ligands

on platelet membrane fluidity were much lower in

diabetic platelets: lower rigidizing (RGDS, t-PA) and

lower fluidising effects (Fg, H-12-V) were particu-

larly distinct at the lower depths of a lipid bilayer of
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platelet membranes (Fig. 3B). Further, these changes

in dynamics of diabetic platelet membranes paralleled

increased glycation of platelet membrane proteins in

diabetes, which encourages to conclude that these

much hampered effects on dynamics of platelet mem-

brane lipid bilayer likely result from rearrangements

in the lipid-protein interactions in rigidized mem-

branes of diabetic platelets [97].

Platelet hypersensitivity contributes to acceler-

ated platelet aging in diabetes mellitus

As the more viscous lipid matrix implies the greater

projection of membrane proteins toward the external

environment, it may instantaneously result in more

exhaustive glycation of newly unshielded protein resi-

dues, which become accessible for glucose moieties.

Such a self-supporting mechanism may render some

membrane proteins becoming more displaced toward

the external site of a membrane and considerably en-

hance the probability of the accelerated shedding the

displaced proteins off membrane [63, 87]. Thus, we

might expect that circulating diabetic platelets that of-

ten encounter episodes of activation may loose their

functional membrane glycoproteins. The hypothesis

has been raised that subsequent replacements of mem-

brane glycoproteins shed off activated platelets may

contribute to faster exhaustion of platelet intrinsic

storage pools, and finally to accelerated platelet ‘con-

sumption’ in diabetes [95]. In the course of such

a process platelets from diabetic individuals would

gradually attenuate their natural reactivity much faster

than control platelets. Indeed, the accelerated ‘con-

sumption’ of the functional platelet membrane pro-

teins has been occasionally reported in type 1 and

type 2 diabetic patients, where platelets presented di-

minished total amount of �3 subunit of fibrinogen re-

ceptor complex GPIIb-IIIa, and the response of plate-

lets challenged in vitro with strong agonists, like

thrombin, was much reduced [92].

Platelet volume distribution comprises sub-

populations of smaller and larger platelets

Each platelet volume distribution may be decomposed

mathematically to partial volume distributions (the

so-called exponentially-modified Gaussian distribu-

tions), representing subpopulations of cells differing

in their dimensions (Fig. 4A). Such an approach re-

vealed that platelet volume distributions in diabetic

individuals are characteized by an apparent size bimo-

dality, resulting from higher numbers of platelets of

the extreme dimensions: very small platelets and very

large platelets (Fig. 4B) [92]. These two platelet sub-

populations of extreme dimensions are believed to

differ considerably in their function, e.g. their reactiv-

ity and susceptibility to release granule contents.

Small platelets are less dense cells and are often re-

garded as older platelets, which have undergone more

episodes of release reaction and hence they are more

exhausted off their granule contents. In turn, the in-

creased fraction of platelets with larger size appears to

optimise platelet aggregation [113]. Large platelets

are considered younger cells, which have been re-

ported as more sensitive and more rapidly recruited
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A

B

Fig. 3. Changes in dynamics of platelet membrane lipid bilayer in-
duced by the interaction with fibrinogen-derived peptide ligands. (A)
RGDS decreased relative apparent interchromophore separation
(lowered ANS-tryptophan distance in platelet membrane proteins)
(p < 0.001), and immobilized platelet membrane protein domains la-
beled with ethoxyfluorophosphinyloxy-TEMPO (p < 0.001) or male-
imide-TEMPO (p < 0.025), for H-12-V the changes were opposite
[96]. (B) Fluidizing effects of fibrinogen (0.01 µM), FgD (0.01 µM) or
H-12-V (10 µM) and rigidizing effects of RGDS (10 µM) or t-PA
(0.01 µM) were less pronounced in platelets from diabetic patients
(p < 0.04 or less) [97]



into both micro- and macroaggregates in response to

stimulating agents [78, 81, 113]. It may be deduced

that with the increased frequency of the episodes of

platelet release reaction, like in diabetes, there is the

increased fraction of smaller and exhausted platelets,

which become gradually replaced by large and hyper-

active platelets [92].

Large platelets are more frequent in diabetic

patients and platelet turnover is faster in diabe-

tes mellitus

Some reports have claimed that larger platelets are

more frequent or the mean platelet volume (MPV) is

higher in diabetic patients, and these alterations have

been often attributed to the quality of diabetes control

[29, 61]. Besides the recognized clinical indicators of

metabolic quality control of diabetes (fasting plasma

glucose, fructosamine, hemoglobin A1), several other

parameters have been related to MPV, including

membrane receptor expression or release of intra-

platelet granule contents from activated platelets [61,

78, 80]. Since platelet size is generally perceived as

a determinant of platelet function, with larger platelets

being more reactive per unit volume [81, 92], an in-

creased platelet size is thought to be a potential pre-

cursory factor in micro- and macrovascular complica-

tions of DM [61]. The enlargement of the mean plate-

let volume induced by increased severity of the

diabetic state might reflect decreased mean age of the

circulating platelets, which in turn implies shorter sur-

vival time and an increased turnover of the platelet

population in DM [80, 81, 92, 109]. The increased

fraction of larger, hyperaggregable platelets and/or the

increased averaged platelet volume (MPV) may re-

flect the increased frequency of the episodes of plate-

let activation, and subsequently exaggerated platelet

consumption and increased platelet renewal [79, 80,

92]. Thus, the increased MPV, related to increased

numbers of large platelets in diabetic patients, is often

regarded as a hallmark of impaired thrombopoiesis in

DM [78, 81]. It has been reported that the accelerated

thrombopoiesis, reflected by the increased fractions of

reticulated (rich in residual RNA) platelets, directly

contribute to platelet volume bimodality in diabetic

individuals [92].

In general, the overall platelet reactivity, as meas-

ured by aggregation and total release of granular con-

tent, correlates with platelet size [61, 78, 82]. The

shifts in platelet volume heterogeneity in type 2 dia-

betic patients, reflected by higher numbers of platelets

of extreme dimensions (Fig. 4B), were associated with

increased platelet response to agonists, and elevated

consumption of circulating platelets, as deduced from

increased fractions of platelet microparticles [92].

Tschoepe et al. who found the elevated average

number of �IIb�3 complexes in the platelets originat-

ing from type 1 and type 2 adult diabetic patients [79],

have raised the suggestion that platelet hyperactivity

reported in the diabetic state may thus be due to pri-

marily altered production of platelets with an in-

creased number of functional glycoproteins [78, 79].

Thus, the finding that peripheral platelets circulate in

an activated state in newly diagnosed or even in pre-
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Fig. 4. Analysis of platelet volume heterogeneity. (A) Platelet volume
distributions, acquired by the automated cell counters, may be de-
composed to the partial exponentially-modified Gaussian (EMG) dis-
tributions, describing the componential platelet subpopulations.
These resultant componential distributions are characterised by four
individual measures of platelet volume dispersion: the distribution
mode (volume of the most frequently represented platelets), devia-
tion corresponding to platelet distribution width (PDW), area below
the curve circumscribing a given platelet subpopulation and the so-
called “dispersion” parameter, characterizing the right-side expo-
nentially vanishing ‘tail’ of the distribution. (B) Frequency distributions
show that in diabetic individuals there are higher number of platelets
of extreme dimensions: very small platelets and very large platelets
are more frequent in diabetic compared to control individuals [92]



diabetic individuals suggests a chronic condition of

ongoing platelet consumption [106]. These observa-

tion suggests that it may be a primary alteration of

platelet precursors, megakaryocytes, already at the

level of bone marrow [76].

The concept that the most dense platelets are young

platelets that become less dense as they age in the cir-

culation implies that this process may be also modu-

lated by some pathogenic factors. Of these, lipid al-

terations and nonenzymatic glycosylation, as well as

the resulting reduced platelet membrane fluidity rele-

vant to diabetic state, have been pointed out as the

modulators of the utmost importance [87]. The asso-

ciation between reduced platelet membrane lipid flu-

idity occurring in diabetes and the enhanced activa-

tion of circulating blood platelets implies that platelet

membrane receptors are more exposed to the external

environment [87, 92, 95, 110], and thus the altered

membrane dynamics might contribute to platelet hy-

persensitivity in diabetic state [95, 107, 111, 110], the

formation of platelet volume heterogeneity [92], and

consequently to an increased platelet turnover and re-

duced survival of platelets from the diabetic individu-

als [80, 81, 87, 92, 109].

Pharmacological modulation of platelet func-

tion in people with diabetes

Platelets of diabetic patients are found in a permanent

prethrombotic state. Platelet ‘priming’ to more spon-

taneous activation and aggregation with resultant arte-

rial thrombus formation, are considered central

mechanisms in the pathophysiology of acute arterio-

thrombotic events in people with DM [80]. It is

largely the consequence of the outcomes originating

from large-scale randomized trials showing that, be-

sides the requirements of tight glucose control im-

proving the vascular status of diabetic patients, anti-

platelet agents have also been shown to be effective in

primary and secondary prevention of cardiovascular

and stroke events in diabetes [17, 18]. Of them, aspi-

rin and thienopyridine derivatives are the most com-

monly used antiplatelet agents, effective in reducing

the associated risk of myocardial infarction and stroke

[1, 2, 16]. Although clinical efficacy and safety of as-

pirin (acetylsalicylic acid, ASA) has been well recog-

nised for decades, it has always been regarded as

a relatively weak antiplatelet agent and several clini-

cal trials have also exposed the limitations of ASA in

some particular groups of patients, including indi-

viduals with diabetes [1, 2].

Platelets from diabetic patients show reduced

sensitivity to ASA

Recent research indicates that platelet response to as-

pirin treatment shows a huge individual variability

and the same dose of aspirin which is effective in

some patients may be characterized by low therapeu-

tic index in others [50]. The direct consequence of the

aforementioned variability in response to ASA is that

the optimum dose of aspirin as an antithrombotic drug

can differ in different approaches and different groups

of patients [4]. Along with such a variability there is

also a considerable heterogeneity in the yield of a pro-

tection by ASA against thromboembolic complica-

tions, reported particularly in some clinical states [11].

This phenomenon is known as reduced blood platelet

sensitivity to aspirin and often referred to as the so called

“aspirin-resistance”. Nowadays, there is no unambiguous

evidence pointing to the cause of reduced blood platelets

response to ASA, nevertheless multiple mechanisms for

resistance have been proposed, including both genetic

and environmental factors [21, 34, 50, 51, 60, 101].

Occasional data in the literature indicate that

aspirin-induced suppression of platelet thromboxane

synthesis may be lower in diabetic than non-diabetic

subjects [46]. Our own observations point that low-

ered sensitivity to aspirin may concern not only the

arachidonic acid-mediated platelet aggregation but

also platelet response to collagen. The maximal inhi-

bition of platelet aggregation by ASA was found to be

lower and IC50 higher in diabetic compared to control

subjects, both in the presence of arachidonic acid and

collagen. Thus, the diminished platelet sensitivity to

aspirin in diabetic individuals in the presence of vari-

ous agonists might suggest that aspirin-induced re-

duction in platelet function is a more generalized phe-

nomenon, not merely attributed to the inhibition of

platelet cyclooxygenase. Moreover, the observed re-

duced response of platelets from diabetic subjects to

aspirin was associated with a higher level of fraction

of glycated hemoglobin (HbA1c) lower concentration

of high-density lipoprotein cholesterol and a higher

total cholesterol concentration [94]. The latter obser-

vation points to possible metabolic factors underlying

the reduced platelet sensitivity to the action of ASA in

patients with diabetes.
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High glucose lowers ASA effectiveness to in-

hibit blood platelet reactivity

Given that the relative insensitivity of platelets from

diabetic patients to ASA relates to some markers of

metabolic control in diabetic patients (like glycemia

control and plasma lipid profile), it appears clear that

an inadequate metabolic control of diabetes may con-

stitute an important determining factors of the re-

duced platelet sensitivity to ASA [46, 56, 65, 94]. In

this respect chronic hyperglycemia, and the resultant

protein glycation, are unique, since they are observed

in no other clinical state but DM.

The mechanism of the inhibitory effect of acetyl-

salicylic acid involves irreversible acetylation of one

particular platelet protein – cyclooxygenase (COX),

which leads to the permanent platelet defect [39].

However, there is a substantial evidence in a literature

pointing that ASA is capable of acetylating in a non-

selective manner all susceptible amino and hydroxyl

groups in a variety of platelet and plasma proteins In

diabetic subjects such a non-specific acetylation is be-

lieved to compete with other non-enzymatic modifi-

cations of proteins, mainly non-enzymatic glycosyla-

tion. Evidence originating from in vitro and in vivo

studies has furnished to support the idea on the possi-

ble role of chemical competing between these two

non-enzymatic modifications affecting a diversity of

proteins, such as collagens, albumins, hemoglobin,

lens crystallins or cellular proteins [15, 20, 41, 69, 112].

In patients with type 2 DM the observed differences in

the susceptibility of platelet proteins for the in vitro ace-

tylation corresponded to the significantly increased gly-

cation of platelet proteins (r = –0.652 p << 0.0001) [99].

The in vitro studies showed that not only the extent

of protein glycation was attenuated by increasing

ASA concentrations, but also high glucose interfered

with ASA reactivity towards protein amino groups

[99]. Hence, the effects of high glucose and high ASA

on the overall occupancy of protein free amino groups

are not additive: while at higher concentrations ASA

is able to overcome the effects of hyperglycemia and

retards glycation, high glucose makes acetylation less

efficient, so the resultant chemical modification be-

comes greatly reduced. Importantly, the ASA-

mediated protein acetylation precludes the attachment

of ‘spacious’ glycosyl (ketoamine) residues by former

modification with much smaller acetyl residues. Con-

sequently, the spheric hindrance originating from

smaller acetyl residues may be reasonably expected to

remain negligible compared to possible conforma-

tional changes induced by the attachment of glucose.

Moreover, chemical competing between ASA and

glucose should be considered more in the aspect of

chemical kinetics and the formation of a peculiar

equilibrium between glucose, ASA and free reactive

protein amino groups, that the ultimate a posteriori

effect of chemical modification.

Hence, in chronic hyperglycemia the occupancy of

amino groups by glucose moieties, and thus diminished

susceptibility and/or vulnerability of various platelet

proteins and receptors on blood platelet membranes to

acetylation, might contribute to the apparently differen-

tiated sensitivity of blood platelets to ASA and deter-

mine “aspirin-insensitivity” in diabetic patients.
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Fig. 5. Aspirin-induced changes in platelet aggregation in cholesterol-
depleted (A) and cholesterol-enriched platelets (B); (A) CD (5 mM,
30 min, 37�C) (dark bars) improves ASA ability to inhibit platelet (opti-
cal) aggregation induced by collagen (2 µg/ml) (p = 0.021 at 40 µM
ASA, NS at 80 µM ASA), (B) MCDX (3 mM, 60 min, 37�C) [52] attenu-
ates ASA effect on collagen-induced platelet aggregation (p = 0.002
at 40 µM ASA, p = 0.0075 at 80 µM ASA), mean ± SE (11–14) [8, 9].
CD – �-cyclodextrin; MCDX – methyl-�-cyclodextrin



Increased platelet cholesterol retards ASA

penetration through platelet membranes

Dyslipidemia is considered one of the reasons of im-

paired antiplatelet action of aspirin in vivo. Based on

the studies of prostanoid compounds formation in hy-

percholestrolemic patients Davi et al. [23] described

an aspirin-insensitive mechanism possibly linking

lipid peroxidation to amplified platelet activation. In

turn, Szczeklik et al. [71] has explained a blunted as-

pirin action in hypercholesterolemia by the lesser ac-

cessibility of platelet membrane proteins for acetyla-

tion by ASA in previously altered lipid-protein

mosaic of platelet membrane. Recently, we demon-

strated an association between reduced platelet sensi-

tivity to aspirin and a higher total cholesterol concen-

tration in diabetic patients [94]. Here, it should be em-

phasized that hypercholesterolemia causes alterations

in platelet membrane lipid profile and significantly af-

fects platelet function by changing the dynamic prop-

erties of cell membranes. Increased platelet mem-

brane cholesterol content, as intimately associated

with lipid membrane fluidity and thus also with signal

transduction, is believed to correspond to elevated

platelet response to agonists and augmented throm-

boxane metabolism [62, 74, 85]. As such it may po-

tentially modulate also a therapeutic action of ASA.

In cholesterol-depleted platelets in the presence of

�-cyclodextrin (CD) the effect of ASA-mediated inhi-

bition of collagen-induced platelet aggregation ap-

peared greater, which was particularly distinct at

lower, subthreshold ASA concentrations (Fig. 5A).

Otherwise, the enrichment of platelets in cholesterol

by using methyl-�-cyclodextrin (MCDX) signifi-

cantly attenuated the inhibitory effect of ASA on

collagen-induced platelet aggregation, and again,

such a modulation in lipid profile remained particu-

larly profoundly marked at lower concentrations of

ASA (Fig. 5B). There was a significant, though non-

linear, correlation between platelet cholesterol content

and the extent of ASA-mediated inhibition of platelet

function (Fig. 6) [8, 9]. Furthermore, the reduction in

platelet membrane cholesterol lead to significant sup-

pression of platelet thromboxane (Tx)A2 production

and such a depletion influenced the extent of the inhi-

bition of TxA2 release by ASA (by up to 23%, 38%

and 72% for 0, 1 and 5 µM ASA) [10]. In general,

platelet cholesterol content significantly affects plate-

let sensitivity to ASA, with higher cellular cholesterol

impairing ASA ability to inhibit TxA2 generation and

platelet reactivity. The possible molecular mecha-

nisms of this association remain elusive. One may

speculate that overall cellular content of cholesterol

certainly affects the lipid profile of platelet surface

membranes, thereby influencing a plethora of

membrane-associated phenomena, including mem-

brane fluidity, transmembrane transport, membrane

signalling etc. Hence, the altered lipid status of plate-

let membranes seems likely to retard ASA penetration

across platelet membranes and to lower ASA potency

to acetylate its intraplatelet target, COX-1. At present,

we have no firm evidence whether it is the case. How-

ever, the role of platelet membrane cholesterol in

platelet response to ASA seems to be pivotal with re-

spect to the phenomenon of platelet resistance to aspi-

rin. Hypercholesterolemia might be the important

metabolic factor predisposing diabetic patients to in-

creased platelet refractoriness to ASA.

To sum up the last remarks concerning the possible

impact of metabolic disorders encountered in diabetic

patients on development of reduced blood platelet

sensitivity to the antiplatelet action of ASA, we may

conclude that:
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Fig. 6. Associations between platelet cholesterol content and ASA-
mediated inhibition of platelet aggregation. Significant non-linear
correlations were observed for ASA used at concentrations of either
40 µM (�) (�

���	
��
= –0.377, p < 0.025) or 80 µM (�) (�

���	
��
=

–0.493, p < 0.004). Insert: Effects of platelet incubation with CD or
MCDX on cholesterol content, p < 0.0001 (CD) and p < 0.0002
(MCDX) [8, 9]



(a) reduced platelet response to ASA in diabetes melitus

is transient and may be directly derived of some meta-

bolic impairments more or less typical for diabetic state,

(b) as far as the nature of such an impaired platelet re-

sponse to ASA is concerned, we may think that an ap-

parent resistance to ASA in people with diabetes

might be ‘amended’ via the compounding pharmacol-

ogical intervention (like f.i. the agents normalizing

hyperglycemia and/or hypercholesterolemia),

(c) the issue of whether and to which extent such

a combined therapy in diabetes (f.i. antiplatelet agents

+ statins) would be effective in overcoming the im-

paired action of some antiplatelet drugs (like ASA)

remains open for further investigations.

ASA “lives” shorter in blood of diabetic patients

Still another possible mechanism explaining the de-

fected clinical effectiveness of ASA in patients with

diabetes concerns its bioavailability.

After the introduction of ASA into the body, the

drug undergoes decomposition into the salicylate

(SA) and acetate. Both ASA and SA comply with

each other as analgesic agents, however, their anti-

inflammatory and antiplatelet effects differ signifi-

cantly [12, 80]. The faster ASA is degraded into SA

and acetate, the less likely it is for ASA to reach plate-

let COX-1 and suppress platelets’ reactivity. There-

fore the rate of aspirin hydrolysis underlying the bioa-

vailability of drug in the circulation seems to be cru-

cial for the effectiveness of the aspirin-mediated

antiplatelet therapy. First, the initial contact of plate-

lets with ASA occurs in the presystemic circulation,

where the majority of platelets’ COX-1 is inhibited

[4]. As much as 30% of ASA introduced to the body

is further hydrolyzed via the first pass mechanism in

liver by the specific enzymes called aspirin esterases

(aspirinases, EC 3.1.1.55) [80]. Subsequently, ASA

reaches the blood circulation, where it is further inac-

tivated by two different pathways of ASA hydrolysis:

pH-dependent autolysis (autolysis or spontaneous hy-

drolysis, with the highest rate at basic pH values) and

enzymatic hydrolysis [80]. The latter has been shown
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Fig. 7. Hydrolysis rate of ASA in blood plasma from non-diabetic and diabetic individuals. (A) Rate constants (k) of total (enzymatic and
spontaneous) hydrolysis of ASA in blood plasma from diabetic patients (�) and healthy donors (�) were: 0.13 ± 0.05 h�
 and 0.08 ± 0.02 h�
,
p < 0.006. Insert: Spontaneous ASA hydrolysis (autolysis) was not different in blood plasma from non-diabetic and diabetic subjects. (B)
ASA-hydrolyzing activities in blood plasma from non-diabetic and diabetic individuals. Diabetic patients (dark bars) showed elevated overall
enzymatic ASA hydrolysing activity compared to non-diabetic individuals (light bars) (0.16 ± 0.05 µkat/l vs. 0.12 ± 0.02 µkat/l, p < 0.003), also
in the presence of specific esterase inhibitors, eserin (0.12 ± 0.05 µkat/l vs. 0.09 ± 0.02 µkat/l, p < 0.02) and 4-bis-nitrophenyl phosphate (0.14
± 0.05 µkat/l vs. 0.10 ± 0.02 µkat/l, p < 0.04) [30]



to be much more dynamic and catalyzed largely by

specific aspirinases [13, 14].

It has been found that that the rate of total (i.e.

spontaneous and enzymatic) ASA hydrolysis was ele-

vated in plasma from type 2 diabetic patients com-

pared to non-diabetic individuals, while no differ-

ences in the rate of spontaneous ASA hydrolysis were

noted (Fig. 7) [30]. Of two tested plasma aspirin es-

terase activities, only the activity at pH 7.4 was re-

vealed to be higher in diabetic patients. This increased

aspirin esterase activity at pH 7.4 was due to butyryl-

cholinesterase (EC 3.1.1.8, also called pseudocholin-

esterase or serum cholinesterase), since the activity

was inhibited by eserine. The difference remained dis-

criminative also in the presence of other esterase in-

hibitor, 4-bis-nitrophenyl phosphate (4-bNP). Other-

wise, the aspirin esterase activity monitored at pH 5.5

was similar in healthy and diabetic subjects, and this

activity was probably due to albumin [42, 47, 53, 84].

Of the interest are the associations between the in-

creased rates of blood plasma ASA decomposition

and the refractoriness of blood platelets to ASA [30],

which indicate that the altered blood plasma ASA hy-

drolysing status may imply lowered ASA bioavail-

ability, and thus may contribute to the reduced effec-

tiveness of ASA-mediated antiplatelet therapy in dia-

betic patients.
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