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Abstract:

Adenosine triphosphate (ATP) release from rabbit erythrocytes occurs in response to deformation or reduced oxygen tension.

A signal transduction pathway that relates these stimuli to ATP release has been proposed. This pathway includes the heterotrimeric

G proteins, Gs and Gi, adenylyl cyclase, protein kinase A, and the cystic fibrosis transmembrane conductance regulator. Importantly,

adenylyl cyclase types II, IV and VII have been reported to be activated by both Gs and Gi. Here, we demonstrate that rabbit

erythrocytes possess an adenylyl cyclase subtype that is activated both by the � subunit and the �� subunit of Gs and Gi, respectively.

Washed rabbit erythrocytes released ATP when exposed to the � adrenergic receptor-mediated activator of Gs, isoproterenol (ISO,

10 �M, n = 8, p < 0.05) as well as in response to incubation with a direct activator of Gi, mastoparan 7 (MAS7, 10 �M, n = 12,

p < 0.05). In contrast, an inactive mastoparan derivative, mastoparan 17 (MAS 17, 10 �M, n = 6) did not stimulate ATP release.

Importantly, incubation of washed rabbit erythrocytes with either isoprotenerol (ISO) (10 �M, n = 7) or MAS7 (10 �M, n = 11)

resulted in increases in cyclic adenosine monophosphate (cAMP) (p < 0.01). Western analysis was used to determine if an adenylyl

cyclase capable of being activated by both Gs and Gi was a component of rabbit erythrocyte membranes. We identified adenylyl

cyclase type II with two antibodies generated against different epitopes of the protein. These results provide support for the

hypothesis that, in rabbit erythrocytes, activation of either Gs or Gi results in the stimulation of adenylyl cyclase resulting in

increases in cAMP leading, ultimately, to the release of ATP.
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Introduction

Previously, we reported that rabbit and human eryth-

rocytes stimulate endogenous nitric oxide (NO) syn-

thesis in the circulation via the release of adenosine

triphosphate (ATP) [27, 28, 30]. ATP released from

circulating erythrocytes can bind to purinergic recep-

tors found on the endothelium that are linked to signal

transduction pathways that lead, ultimately, to the

synthesis and release of NO [6, 13]. Indeed, it has

been shown that rabbit and human erythrocytes re-

lease ATP in response to the physiological stimuli of

reduced oxygen tension [5, 10, 18, 20, 28] and me-

chanical deformation [26, 28, 30].

The mechanism by which ATP is released from

erythrocytes has also been investigated. It has been

reported that erythrocytes of rabbits and humans pos-

sess a signal transduction pathway that relates ATP re-

lease to deformation and exposure to reduced oxygen
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tension. This pathway has been reported to include

the heterotrimeric G proteins Gs [24] and Gi [22, 23],

adenylyl cyclase [29], protein kinase A [29] and the

cystic fibrosis transmembrane conductance regulator

(CFTR) [16, 26]. Importantly, under the proposed

pathway, activation of either Gs or Gi was associated

with the release of ATP from erythrocytes [22–24].

Heterotrimeric G proteins are membrane associated

guanosine triphosphate (GTP)-binding proteins that

contain �, �, and � subunits [10, 20]. When activated,

the � subunit dissociates from the �� complex. The �

subunit and the �� complex, can then regulate, either

individually or synergistically, the catalytic activity of

available adenylyl cyclase (AC) isoforms present in

the cell [1, 9, 10, 18, 20, 31]. The � subunit of Gs ac-

tivates all known isoforms of AC [10, 20]. In the case

of other heterotrimeric G proteins, in addition to the

activity of the � subunit, it is now recognized that the

�� subunit may be capable of activating at least three

of the eight membrane associated isoforms of AC

(subtypes II, IV and VII, Tab. 1) [1, 9, 18, 31]. The het-

erotrimeric G proteins most clearly associated with this

property are of the Gi/o subclass [1, 9, 31]. The hetero-

trimeric G protein, Go, is not found in rabbit erythrocyte

[22], however, Gi� subtypes 1, 2 and 3, are present [22].

Thus, rabbit erythrocytes possess a heterotrimeric G

protein that is capable of stimulating some subtypes of

adenylyl cyclase via the action of its �� subunit.

Here we investigated the hypothesis that rabbit

erythrocytes possess at least one adenylyl cyclase,

specifically type II, that can be stimulated by activa-

tion of Gs as well as Gi. Moreover, we wished to

demonstrate that pharmacological activation of either

of these G proteins results in both ATP release from

and 3’-5’-cyclic adenosine monophosphate (cAMP)

accumulation in rabbit erythrocytes.

Materials and Methods

Preparation of erythrocytes

Animals (male, New Zealand white rabbits, 2 to 3 kg)

were anesthetized (ketamine, 0.25 ml/kg and xylazine,

1.5 mg/kg, im, followed by pentobarbital 15 mg/kg iv)

via a catheter placed in an ear vein. Following tra-

cheostomy, animals were mechanically ventilated (tidal

volume 10 ml/kg, rate 20–25 breaths/min, Harvard ven-

tilator). A catheter was placed into a carotid artery, hepa-

rin (500 units iv) was administered and, after 10 min,

animals were exsanguinated. Immediately after collec-

tion of blood, erythrocytes were separated from other

formed elements and plasma by centrifugation at 500 × g

at 4°C for 10 min. The supernatant and buffy coat were

removed by aspiration. The packed erythrocytes were re-

suspended and washed 3 times in a physiological salt so-

lution (PSS) [in mM; 4.7 KCl, 2.0 CaCl2, 1.2 MgSO4,

140.5 NaCl and 21.0 tris(hydroxymethyl)-aminomet-

hane (Tris) and 5.5 dextrose with 0.5% bovine serum al-

bumin, pH 7.4]. Erythrocytes were prepared on the day

of use. The protocol for removal of blood from rabbits

was approved by the Animal Care Committee of Saint

Louis University.

Preparation of erythrocyte membranes

Washed erythrocytes (2 ml) were added to 200 ml of

a hypotonic buffer solution (in mM; 2.0 ethyl-

enediamine-tetraacetic acid (EDTA) and 5 tris(hy-

droxymethyl)aminomethane hydrochloride (Tris-HCl)

with pH adjusted to 7.4) and stirred vigorously for

20 min at 4°C. The mixture was centrifuged at 23,700

× g for 10 min. The supernatant was discarded and the

membranes were washed twice in the hypotonic

buffer. After the second wash, the membrane fraction

was passed through a 23 gauge needle three times, ali-

quotted and stored at –80°C. Protein concentration

was determined with the bicinchoninic acid (BCA)

protein assay (Pierce).

Identification of adenylyl cyclase type II in

erythrocyte membranes

Membranes were solubilized in SDS sample buffer

[8% sodium dodecyl sulfate (SDS), 60% glycerol,

0.25 M Tris HCl (pH 6.8), 0.004% bromophenol blue,

and 400 mM dithiothreitol] and boiled for 5 min be-

fore loading onto a 5% pre-cast Tris-HCl Ready Gel

(Bio-Rad). After electrophoresis, proteins were trans-

ferred onto a polyvinylidene difluoride (PVDF) mem-

brane. The PVDF membranes were blocked overnight

with 5% non-fat dry milk in phosphate-buffered sa-

line containing 0.1% Tween-20 and then incubated

with rabbit polyclonal antibodies to adenylyl cyclase

II (Santa Cruz). Membranes were then incubated with

donkey anti-rabbit IgG-horseradish peroxidase (Am-

ersham) and exposed to enhanced chemiluminescence

(ECL, Amersham).
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Measurement of ATP and hemoglobin

ATP was measured by the luciferin-luciferase technique

[2, 27, 28] which utilizes the ATP concentration-

dependence of light generated by the reaction of ATP

with firefly tail extract. Sensitivity was augmented by

addition of synthetic D-luciferin to the crude firefly

tail extract. A 200 �l sample of the erythrocyte sus-

pension was injected into a cuvette containing 100 �l

crude firefly tail extract (10 mg/ml distilled water,

FLE 250, Sigma) and 100 �l of a solution of synthetic

D-luciferin (50 mg/100 ml distilled water, Sigma).

The light emitted was detected using a luminometer

(Turner Designs). An ATP standard curve was ob-

tained on the day of each experiment. To exclude the

presence of significant hemolysis, free hemoglobin

was determined after ATP measurements. Samples

were centrifuged at 500 × g at 4°C for 10 min and the

presence of hemoglobin in the supernatant was deter-

mined by light absorption at a wavelength of 405 nm

[33]. In response to stimulation with pharmacological

agonists, the ATP signal increased in the absence of

any increase in light absorption in the range consistent

with the detection of hemoglobin. All data from ex-

periments in which free hemoglobin increased were

excluded. To ensure that the results of the ATP assay

were not altered by the agents with which erythro-

cytes were incubated, the effects of mastoparan 7

(MAS7) and isoproterenol (ISO) on ATP measure-

ment were determined. These agents, at the concen-

trations used in this study, did not alter the sensitivity

of the assay for authentic ATP (data not shown).

Amounts of ATP released were normalized to the

number of erythrocytes present in suspension at a he-

matocrit of 20% (4 × 105 cells/mm3).

Measurement of cAMP

For determination of cAMP, 1 ml of erythrocyte sus-

pension was added to 4 ml of ice cold ethanol contain-

ing 1 mM HCl and the mixture was centrifuged at

14,000 × g for 10 min at 4°C. The supernatant was re-

moved and stored overnight at –20°C to precipitate

remaining proteins. Samples were then centrifuged

a second time at 3,700 × g for 10 min at 4°C. The su-

pernatant was removed and dried under vacuum cen-

trifugation. Concentrations of cAMP were then deter-

mined with the cAMP Enzyme Immunoassay Biotrak

(EIA) System (Amersham Biosciences). Amounts of

cAMP measured were normalized to the number of

erythrocytes present in suspension at a hematocrit of

50% (1 × 107 cells/mm3).

Incubation of erythrocytes with agents that ac-

tivate Gs or Gi

The effect of Gs activation on cAMP accumulation

and ATP release from erythrocytes was investigated

by incubation of cells suspended in PSS (hematocrit

20%) with isoproterenol (ISO, 10 �M, n = 8). ATP

measurements were made in the absence of the ago-

nist as well as 5, 10 and 15 min after addition of ISO.

In the case of cAMP, measurements were made

10 min after the addition of ISO (10 �M, n = 7) to

erythrocytes suspended in PSS at a hematocrit of

50%. In all cAMP studies, 3-isobutyl-1-methyl xan-

thine (IBMX, 100 �M, dissolved in ethanol and di-

luted with phosphate buffered saline, pH 7.4) was in-

cluded to prevent cAMP degradation.

The effect of activation of Gi on ATP release in

erythrocytes was investigated by incubation of cells

suspended in PSS (hematocrit 20%) with mastoparan

7 (MAS7, 10 �M, n = 12) [12, 15, 22]. ATP measure-

ments were made in the absence of the agonist as well

as 5, 10 and 15 min after addition of MAS7. Measure-

ments cAMP were made 30 min after the addition of

MAS7 (10 �M, n = 11) to erythrocytes suspended in

PSS at a hematocrit of 50%. To establish that MAS7-

induced ATP release was related to the activation of

Gi, in 12 additional studies, erythrocytes were treated

with the inhibitor of Gi activation, pertussis toxin

(PTX, 100 ng/ml), for 2 h before determination of

MAS7-induced ATP release. Finally, the effect of an

inactive mastoparan derivative, mastoparan 17

(MAS17, 10 �M, n = 6) on ATP release from erythro-

cytes was determined.

Statistics

Statistical significance between experimental periods

was determined with an analysis of variance. In the

event that the F ratio indicated that changes had oc-

curred, a least significant difference test was used to

identify individual differences. p values of 0.05 or

less were considered statistically significant. Results

are reported as means ± SEM.
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Results

Effect of activation of Gs with ISO on ATP

release from and cAMP accumulation in

erythrocytes

The effect of incubation of erythrocytes with ISO on

ATP release is depicted in Figure 1. The maximum in-

crease in ATP concentration occurred 10 ± 1 min after

administration of ISO. In response to ISO, erythrocyte

cAMP increased by 36 ± 7% (Tab. 1, p < 0.01).

Effect of activation of Gi with MAS7 on ATP

release from and cAMP accumulation in

erythrocytes

The effect of incubation of erythrocytes with MAS7

on ATP release is depicted in Figure 2A. The maximal

increase in ATP concentration occurred 8 ± 1 min af-

ter administration of MAS7. The results of two addi-

tional studies provide support for the hypothesis that

MAS7 acted via stimulation of Gi. First, MAS7-

induced increases in ATP release were prevented by

pre-incubation of erythrocytes with pertussis toxin, an

inhibitor of the activation of Gi (Fig. 2A). Second, in-

cubation of erythrocytes with the inactive mastoparan

derivative, MAS17 was not associated with any in-

crease in ATP release, i.e. ATP release was not a non-

selective response to exposure of erythrocytes to pro-

tein (Fig. 2B). In response to incubation with MAS7,

cAMP concentration in erythrocytes increased by

22 ± 8 % (Tab. 1, p < 0.01).
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isoproterenol (ISO, n = 7) 3.11 ± 0.36 4.19 ± 0.54*

mastoparan 7 (MAS7, n = 11) 1.12 ± 0.06 1.34 ± 0.06*

-�
��� ��� ���� . �/� 0 1 ��		����� 	��� ��
�� 	�� ����������
�!�/�23/� � < � �� 

A
T

P
(µ

M
p

e
r

4
×

1
0

R
B

C
s
/m

m
)

2.00

1.50

1.00

0.50

0.00

BASELINE ISOPROTERENOL

Fig. 1. /		��� �	 ������������
 �� !4
 ��
���� 	��� ��55�� ������������ 
6����� ������������ )��7 ����������, 8��� ����5���� 8��� ���%
���������
 )�� ��� � 9 :, !4
 ��
���� 8�� ���������� 5�	���
)�!�/�23/, ��� ;� �� ��� �; ��� �	��� �������� �	 ������������
 4��
��
�� 	�� 2�<
$<4/$/3<� �� ��� ���= ��
�� �5������ 0 � > � �;�
��		����� 	��� 5���
���

BASELINE MASTOPARAN 7

0.00

0.50

1.00

1.50

*control

PTX

BASELINE MASTOPARAN 17
0.00

0.50

1.00

1.50

A

B

5
A

T
P

(µ
M

p
e

r
4

×
1

0
R

B
C

s
/m

m
)

3
5

A
T

P
(µ

M
p

e
r

4
×

1
0

R
B

C
s

/m
m

)
3

Fig. 2. /		��� �	 ���������� ? ��� ���������� �? �� !4
 ��
����
	��� ��55�� ������������ )A, 6����� ������������ )��7 ����������,
8��� ����5���� 8��� ���������� ? )�� ��� � 9 ��, �� ��� �5�����
)���� 5���, ��� �������� )����� ������� 5���, �	 ��������� ��*��
)
4@� ��� ��+�
 	�� � �, !4
 ��
���� 8�� ���������� 5�	���
)�!�/�23/, ��� ;� �� ��� �; ��� �	��� �������� �	 ���������� ? 4��
��
��� 	�� ���������� ? ��� ��� ���= ��
��� �5������ )B, 6�����
������������ )��7 ����������, 8��� ����5���� 8��� ���������� �?
)�� ��� � 9 ", !4
 ��
���� 8�� ���������� 5�	��� )�!�/�23/, ���
;� �� ��� �; ��� �	��� �������� �	 ���������� �? 4�� ��
�� 	��
�!�4<
!$!3 �? �� ��� ���= ��
�� �5������ 0 � > � �;� ��		�����
	��� �!�/�23/ ��� �!�4<
!$!3 ? �	��� 
4@



Identification of adenylyl cyclase (AC) type II as

a component of rabbit erythrocyte membranes

Erythrocyte membrane preparations from 5 rabbits

were studied via Western blotting to determine the

presence of AC type II. Two distinct bands were iden-

tified by an antibody generated against the c-terminal

domain of this AC subtype, one at an apparent mo-

lecular weight of ~200 kD and a second band at ~110 kD.

A typical gel is depicted in Figure 3. Importantly, we

determined that a second rabbit polyclonal antibody

directed against an internal epitope of AC type II

identified the same ~200 kD band (data not shown).

Discussion

Erythrocyte-derived ATP has been shown to be a de-

terminant of vascular resistance in the pulmonary cir-

culation [27, 28, 30] and skeletal muscle [3, 8, 17] as

well as in isolated resistance vessels [6]. The ability

of this ATP to decrease vascular resistance has been

reported to result from the stimulation of vascular NO

synthesis [7, 27, 30]. Erythrocytes of humans, rats,

rabbits and hamsters release ATP in response to re-

duced O2 tension and deformation [2, 7, 28, 30].

Moreover, a signal-transduction pathway that relates

these stimuli to ATP release has been proposed and in-

cludes the cystic fibrosis transmembrane conductance

regulator (CFTR) [17, 26], protein kinase A (PKA)

[29], AC and cAMP [29] as well as the heterotrimeric

G proteins Gs [24] and Gi [22, 23]. Importantly,

within this pathway, activation of Gi stimulates ATP

release (Fig. 4) [22, 23].

When heterotrimeric G proteins are activated, they

dissociate into � and �� subunits [10, 20]. The �

subunit of the G protein, Gs, can then activate all AC

isoforms [10, 20]. In contrast, the � subunit of the G

protein, Gi, can interact with some AC isoforms re-

sulting in their inactivation [1, 9, 18, 31]. Hence, tra-

ditionally, Gs is referred to as a “stimulatory” G pro-

tein while Gi is considered to be an “inhibitory” G

protein. Recently, the concept that Gi is solely an in-

activator of AC has been called into question by re-

ports that, in addition to the inhibitory effect of �

subunit of Gi on some isoforms of AC, the �� subunit

of Gi is capable of activating other isoforms, specifi-

cally those of the II, IV and VII subtypes [1, 9, 31].

The hypothesis that heterotrimeric G proteins of

the Gi subtype are involved in deformation-induced

release of ATP from erythrocytes is supported by re-

ports that these G proteins are activated when endo-

thelial cells as well as other cell types are exposed to

a deforming force [11, 14, 21]. In addition, it was

shown previously that pre-incubation of rabbit eryth-

rocytes with pertussis toxin, which inhibits activation

of Gi by preventing its dissociation into the constitu-

ent � and �� subunits, also inhibits ATP release in re-

sponse to both deformation and exposure to reduced

oxygen tension [22, 23]. One interpretation of this

finding is that these physiological stimuli resulted in

activation of Gi, resulting in its dissociation into the

component � and �� subunits and subsequent stimula-

tion of AC resulted in increased cAMP and, ulti-
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mately, ATP release. Here we report that incubation of

rabbit erythrocytes with either isoproterenol, a selec-

tive � adrenergic receptor agonist that activates Gs

(Fig. 1) or MAS7, a derivative of mastoparan which

activates Gi (Fig. 2A), stimulate both ATP release

(Figs. 1 and 2A) and cAMP accumulation (Tab. 1) in

rabbit erythrocytes. The finding that pre-treatment of

erythrocytes with PTX inhibited MAS7-induced ATP

release (Fig. 2A) and that the inactive mastoparan de-

rivative, MAS17, had no effect on ATP release (Fig.

2B) provide additional support for the hypothesis that

the observed effects of MAS7 are mediated by activa-

tion of the heterotrimeric G protein, Gi. Moreover,

these results suggest that, in these cells, activation of

Gi results in stimulation of AC activity via the activity

of the associated �� subunit.

If activation of Gi results in the stimulation of AC

activity, it is important to demonstrate that an AC sub-

type that is stimulated by the �� subunit of this hetero-

trimeric G protein is a component of rabbit erythro-

cyte membranes. Here, using Western analysis, we re-

port for the first time that rabbit erythrocytes possess

at least one AC isoform that is activated by ��

subunits of Gi, namely, AC type II (Fig. 3). The anti-

body to AC type II reacted with two distinct proteins

based on apparent molecular weight; one at ~200 kD

and another at ~110 kD. The molecular weight of AC

type II would be predicted to approximate 120 kD

based upon analysis of amino acid composition. How-

ever, it has been reported that both fragments with

lower apparent molecular weight as well as higher

molecular weight complexes (200–250 kD) [19, 25,

32] may be found in various cell types. The higher

molecular weight complexes have been suggested to

result from dimerization, association with other pro-

teins or glycosylation [19, 25, 32]. Importantly, it was

reported that, in human myometrium, AC was found

predominantly at an apparent molecular weight of

~200 kD [25]. In the work presented here we found

that the antibody to AC type II recognized two bands.

The denser band was determined to have an apparent

molecular weight of ~200 kD, consistent with the pos-

sibility that the protein is either associated with other

proteins in the signaling cascade, dimerized or glycosy-

lated in erythrocytes membranes. The finding of a sec-

ond band at an apparent molecular weight of ~110 kD is

consistent with identification of the AC monomer [32].

In summary, in the work presented here we have

demonstrated that activation of heterotrimeric G pro-

teins of both the Gs and Gi subtypes results in ATP re-

lease from rabbit erythrocytes. Moreover, we have

shown that the release of ATP is accompanied by in-

creases in intracellular cAMP levels suggesting that

activation of both Gs and Gi results in stimulation of

AC activity. Finally, we have identified the presence

of AC type II in rabbit erythrocyte membranes. The

latter finding is important in that this is the first identi-

fication of any AC in an erythrocyte membrane and

that the isoform identified, AC type II, is one that is

activated by both the � subunit of Gs and the ��

subunit of Gi. These results provide new information

regarding the nature of the signal transduction path-

way that relates physiological stimuli to ATP release

from erythrocytes. A better understanding of this

pathway will permit the development of new hypothe-

ses regarding the control of ATP release from erythro-

cytes in health and disease.
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