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Abstract:

Effects of orally administered lactoferrin (LF) on the cellular and humoral immune responses in mice subjected to immobilization

stress (IS) were investigated. Here, we demonstrate that long-term IS induced significant suppression of cellular and humoral

immune responses in CBA mice. The suppression was attenuated by LF given to mice in drinking water as determined by the number

of antibody-forming cells (AFC) in the spleen and the magnitude of delayed type of hypersensitivity (DTH). On the other hand, LF

lowered the elevated DTH response in mice exposed to short-term IS (5 h only) on the day of elicitation of the DTH reaction. We also

showed that LF up-regulated spontaneous transforming growth factor beta (TGF-�) production in the cultures of mesenteric lymph

node cells derived from short-term stressed mice. This is the first report on the regulatory effect of LF on the immune response

modified by the psychic stress and is consistent with other reports on antinociceptive and analgesic actions of LF in experimental

animals.
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Introduction

Interdependence between the function of the central

nervous system and the immune system is well estab-

lished [35]. The signaling between these two systems

is accomplished by hormones and cytokines, so-called

hypothalamic-pituitary-adrenal axis (HPA) and occurs

during various types of immune response including

trauma and stress [5]. Depending on duration, type

and intensity, stressful conditions may differentially

affect the immune response in experimental animal

models and in humans.

Restraint stress in the mouse model induces severe

lymphopenia absent in adrenalectomized mice indi-

cating a role of endogenous steroid hormones [26].

Mature T cells are more resistant to stress than B cells

[3]. Stress is also associated with the increased per-

centage of neutrophils in circulation [4]. Stress affects

both humoral [12] and cellular immune response [11]

but not in submissive animals [6]. Stress was also

found to modify experimental autoimmune encepha-

lomyelitis (EAE) in rats [2]. In humans, mild stress

causes a shift towards T-helper type 2 (Th2) cytokine

production [18]. A short reexposure of stressed ma-

caques to a moderate stressor caused higher release of
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transforming growth factor beta (TGF-�� compared

with control animals [28], indicating a role for that

cytokine in counteracting adverse consequences of

stress.

Lactoferrin (LF) belongs to the family of proteins

involved in iron metabolism and is a very important

constituent of the innate immune system [15]. The

protein content is high in secretory fluids of mammals

[15]. It is also present in secondary granules of circu-

lating neutrophils [32]. The serum level of LF upon

infection [23] and clinical procedures [32] is signifi-

cantly elevated. LF presents a wide array of antibacte-

rial actions, both direct [34] and indirect [37] as well

as protective properties in experimental endotoxemia

[13, 16]. Inhibition of proinflammatory cytokines [16]

and free radicals [1] may account for those actions.

Several LF cell surface receptors have been described

including those on intestinal cells [10]. Although LF

is partially degraded by proteolytic enzymes, a part of

the protein can cross the intestinal barrier intact [31]

and the LF-derived peptides are also strongly immu-

notropic. LF was shown to inhibit effector phase of

delayed type hypersensitivity (DTH) [40] and to se-

lectively suppress function of Th1 cells [41]. In addi-

tion, LF was shown to induce interleukin (IL)-10

when given per os or intravenously [39], which links

LF to the cytokine involved in down-regulation of

Th1 type response [22].

The aim of this investigation was to assess potential

role of LF in stress-related immune responses in mice.

Materials and Methods

Animals

CBA mice, males and females 12 weeks old, were de-

livered by Animal Facility of the Institute of Immu-

nology and Experimental Therapy (IIET), Wroclaw,

Poland. Mice were fed a pelleted commercial food

and water ad libitum. The IIET Ethics Committee ap-

proved the study.

Reagents

Low-endotoxin bovine milk lactoferrin (LF) (0.16

E.U./mg, < 25% iron saturated) was purchased from

Morinaga Milk Industry Co, Japan. Sheep red blood

cells (SRBC) were delivered by Wroclaw Agriculture

Academy. SRBC were kept in Alsever’s solution at

4°C until use. Ovalbumin (OVA) and RPMI-1640 me-

dium were purchased from Sigma (USA); complete

(cFa) and incomplete (iFa) Freund’s adjuvants were

delivered by Difco (USA). Fetal calf serum (FCS)

was supplied by Gibco. The level of TGF-� was de-

termined by ELISA kit from R&D Systems.

Immobilization stress (IS) and treatment with LF

Prior to immunization for induction of the humoral

and cellular immune response, mice were kept in spe-

cially designed restraining device each day for 5 h, for

5 consecutive days (long-term stress). Alternatively,

mice were exposed to IS for 5 h before elicitation of

DTH response (short-term stress). Mice, including

control animals, were not given access to food and

water during the restraint period. LF was applied to

mice as a 0.5% addition to drinking water for the en-

tire duration of the experiments (5 days before immu-

nization with OVA or SRBC until determination of

DTH reaction or AFC numbers) (long-term stress).

That concentration of LF has been chosen in the

course of our previous studies regarding immuno-

tropic action of LF. In the model of short-term stress,

LF was given to mice from the day of immunization

to the day of DTH elicitation. For determination of

TGF-� production by mesenteric lymph node cells,

mice were given LF (0.5% solution in drinking water)

for 3 days before short-term stress and cell isolation.

Humoral immune response

Mice (5 per group) were immunized intraperitoneally

(ip) with 5% suspension of SRBC (0.2 ml). Four days

later spleens were isolated and the number of

antibody-forming cells (AFC) was determined by

a test of local hemolysis in agar according to Mishell

and Dutton [19]. The results are presented as the

mean AFC values per 106 splenocytes ± standard er-

ror (SE).

Cellular immune response

Mice were sensitized with 5 µg of OVA emulsified in

cFa, injected subcutaneously (sc) into the tail base.

Four days later mice were given sc an eliciting dose of

OVA (50 µg) in iFa in the hind foot pads and 24 h

later the foot pad edema was measured using a cali-
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per. Nonspecific foot pad edema in naive mice, given

an eliciting dose of antigen, was subtracted. The re-

sults are presented as the mean antigen-specific in-

crease in the foot pad thickness expressed in DTH

units (1U = 0.1 mm) ± SE. The experimental groups

consisted of 5 mice and the results are given as the

mean values from 10 measurements (foot pads) ± SE.

Isolation of mesenteric lymph nodes lympho-

cytes and determination of TGF-�

Mesenteric lymph nodes were pressed through plastic

screens into cold RPMI-1640 medium. The cells were

washed two times, resuspended in a cell culture me-

dium (RPMI-1640, 10% FCS, glutamine, sodium py-

ruvate, 2-mercaptoethanol and antibiotics) placed

onto 96-well plates (Nunc) at a density of 2 × 105

cells/well, and cultured at 37°C. The level of TGF-�

in 30 h cell culture supernatants was determined by

ELISA. The results are expressed in pg/ml.

Statistics

The results are presented as the mean values ± SE.

The Levene’s test was used to determine the homoge-

neity of variance between groups. When the variance

was homogeneous, analysis of variance (ANOVA)

was applied, followed by post hoc comparisons with

the Tukey’s test to estimate the significance of the dif-

ference between groups. Significance was determined

at p � 0.05.

Results

Effects of LF on stress-elicited changes in the

delayed type hypersensitivity

Mice were exposed to an IS regimen for 5 days before

sensitization with antigen (OVA) (long-term stress).

The results indicate that DTH response inhibited by

IS was significantly restored by administration of LF

in drinking water (Fig. 1). On the other hand, the DTH

response, elevated after short exposure to IS (5 h be-

fore administration of the eliciting dose of antigen),

was normalized in mice administered LF (Fig. 2).

Effects of LF on stress-elicited inhibition of the

humoral immune response

Mice exposed to IS regimen for 5 days (long-term

stress) exhibited suppressed humoral immune re-

sponse as determined by the number of antibody-

producing cells. As presented in Figure 3 the suppres-

sion was reversed in mice administered LF in drink-

ing water in parallel to IS.
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Up-regulation of spontaneous TGF-� production

in mesenteric lymph node cells derived from

stressed mice treated orally with LF

The effects of LF on the spontaneous TGF-� produc-

tion in stressed and unstressed mice are presented in

Figure 4. Mice were drinking 0.5% LF solution for 3

days, then were stressed for 5 h (short-term stress)

and mesenteric lymph nodes were isolated on the next

day. The levels of TGF-� in 30 h cell cultures were

comparable in control unstressed mice and unstressed

control mice drinking LF solution. The concentration

of TGF-� in cell cultures from control stressed mice

was slightly elevated but lymph node cells from

stressed mice additionally given LF produced signifi-

cantly more TGF-�.

Discussion

In this report we demonstrated that oral administra-

tion of LF might reverse stress-elicited immune re-

sponses in mice. We relate these effects of LF in part

to its ability to “sense” an abnormal immune status to

act accordingly [36, 43]. It is, however, difficult to

provide satisfactory explanation for LF actions with-

out a complex study of the stress-induced immune re-

sponses over long periods of time. One could also en-

visage that LF can counteract changes in stress-

elicited release of endogenous steroids by several

mechanisms. We recently found (unpublished) that

LF may transiently increase cortisol serum level when

given intravenously to mice. The ability of LF to re-

verse the consequences of the IS could be also related

to induction of IL-6 [39] or nitric oxide [38], that are

signaling molecules in the nervous and immunologi-

cal systems. Others have found that blockage of nitric

oxide synthase prevented LF protective action in a rat

stress model [29]. The authors also demonstrated that

LF suppressed distress in that model via an opioid-

mediated mechanism. LF applied spinally may also

produce analgesia, which could be reversed by its co-

administration with nitric oxide synthase inhibitor [9].

A possibility exists that LF, by inhibiting free radical

formation [1], may attenuate lipid peroxidation in

piriform cortex as reported for topiramate in kainate-

induced status epilepticus in rats [14]. In addition, LF

may cause a decrease in the blood pressure [8] possi-

bly counteracting the effects of IS on blood pressure.

Antinociceptive effect in the rat adjuvant-induced ar-

thritis model was recently found upon oral LF admini-

stration [7]. The regulatory action of LF in the IS

model may also share a similar mechanism as in the

case of LPS-induced desensitization of the HPA axis

[30], since in several in vitro [36, 42] and in vivo [39]

models LF demonstrated comparable effects as LPS.

The regulatory effect of LF in the mouse model

may also be associated with the ability of LF to in-

duce a potent, immunosuppressive cytokine TGF-�.
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That phenomenon could be particularly relevant to the

model of short-term stress where LF exerted the

down-regulatory activity. In fact, we demonstrated

that oral treatment of stressed mice with LF increased

TGF-� production by mesenteric lymphocytes (Fig.

4). Since others reported that TGF-� might inhibit lib-

eration of corticotropin releasing factor (CRF) [21], it

is possible that stress-generated changes in the func-

tioning of the immune system may be, in this way, re-

versed. Furthermore, the level of IL-10, a down-

regulatory cytokine [25], was also increased (2-fold) in

the cultures of mesenteric lymph node cells, derived

from stressed mice drinking LF solution (not shown).

Therefore, the protective action of LF in diminution

of stress-related disorders may be due to its regulatory

action on TGF-� and IL-10. Still another possible

mechanism of counteracting effect of LF in the short-

term stress model is its ability to inhibit migration in-

hibitory factor (MIF) [40]. That is a unique cytokine

which is activated by a stress mediator – CRF [33].

LF is not the only protein, present in milk, exhibiting

analgesic and relaxing properties. Similar activities are

displayed also by casein peptides [24], �-lactalbumin

[17] and peptides derived from �-lactalbumin and

�-lactoglobulin – �- and �-lactorphin, respectively

[20, 27]. Casein peptides decreased blood pressure,

elevated during stress, by inhibiting the activity of the

enzyme converting angiotensin I to active angiotensin II

(a strong hypertensive compound acting on blood ves-

sels). Hypotensive action of the lactorphins was attrib-

uted to its effect on endothelial function [27] and was

abolished by naloxone, an antagonist of the opioid re-

ceptors [20]. One of those casein peptides demonstrated

also opioid activity [24]. Nevertheless, there have been

no reports on the counteracting actions of these proteins

and peptides on stress-modified immune response.

In conclusion, this study demonstrated that LF could

normalize the IS-induced immune response in mice. The

above-described antinociceptive and anti-inflammatory

actions of LF and its regulatory effect on cytokine pro-

duction may account for these effects. These results sug-

gest a possible application of LF for treatment of pa-

tients suffering from stress-related disorders.
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