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The efficacy of melatonin (MLT) against ammonium acetate-induced
neurotoxicity was biochemically studied in the experimental rats. The activi-
ties of serum transaminases and the levels of thiobarbituric acid reactive sub-
stances were significantly increased in ammonium acetate-treated rats.
These levels were significantly decreased in MLT and ammonium acetate-
treated rats. Further, non-enzymatic (vitamin C and E) and enzymatic (super-
oxide dismutase and catalase) antioxidants were significantly decreased in
ammonium acetate-treated rats and were increased in MLT and ammonium
acetate-treated rats. These biochemical alterations during MLT treatment
could be due to its ability to: (i) scavenge a variety of radicals and reactive
species, (ii) induce antioxidative enzymes which reduce steady state levels
of reactive species, (iii) inhibit nitric oxide synthase which generates nitric
oxide and (iv) stabilize cell membranes which assists them in reducing oxi-
dative damage and, thus, prevents the oxidative stress in rats.
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INTRODUCTION

Ammonia is a catabolic product of protein and
nitrogenous compounds that is formed in mammals
and humans. At high levels, ammonia is neuro-
toxic, it affects the functions of the central nervous
system, and leads to coma and death [23]. Hy-
perammonemia, caused by insufficient removal of
ammonia in the liver [16] or portacaval shunting
[4], leads to an increase in ammonia level in the
brain [4], which is responsible for development of
hepatic encephalopathy [1, 3]. Ammonia intoxica-
tion impairs mitochondrial function [10], which
could lead to decreased ATP synthesis and also to
increased formation of free radicals [11]. The major
toxic effects of ammonia likely involve changes in
cellular pH and the depletion of certain citric acid
cycle intermediates, in particular �-ketoglutarate. It
has been reported that sustained hyperammonemia
in mice leads to increased lipid peroxidation in liver
and brain, reflecting an oxidative stress condition.

Melatonin (N-acetyl-5-methoxy-tryptamine) is
the chief secretory product of the pineal gland. It is
present in virtually all organisms ranging from bac-
teria [15] to mammals [24]. Recently, it has been re-
ported that a variety of other tissues including retina
[22], Harderian gland [17], ovary [8], testes [37] and
bone marrow [5, 35] may also synthesize melatonin.

Melatonin is an endogenous free radical scav-
enger [33] and a broad spectrum antioxidant [26]. It
detoxifies a variety of free radicals and reactive
oxygen intermediates including the hydroxyl radi-
cal, peroxynitrite anion, singlet oxygen and nitric
oxide [27]. Melatonin, which shows extreme diffu-
sibility through membranes, is important for its
scavenging action, since it could enter all cells and
every subcellular compartment.

However, the antioxidant potential of melatonin
during hyperammonemia has not been investigated
so far. In the present study, the antioxidant potential
of melatonin has been evaluated by estimating the
activities of transaminases, levels of thiobarbituric
acid reactive substances (TBARS), non-enzymatic
antioxidants (vitamin C and E) and enzymatic anti-
oxidants [superoxide dismutase (SOD) and catalase
(CAT)] in experimental rats.

MATERIALS and METHODS

Adult male Wistar rats (weighing 180–220 g),
obtained from National Center for Laboratory Ani-

mal Sciences, Hyderabad, were kept at room tem-
perature (32 ± 2°C) at L:D (12:12) cycles. All stud-
ies were conducted in accordance with the National
Institutes of Health “Guide for the Care and Use of
Laboratory Animals” [18]. Animals were random-
ized and separated into four groups (Group I – con-
trol, Group II – ammonium acetate-treated, Group
III – ammonium acetate- and melatonin-treated,
Group IV – melatonin-treated; n = 6 in each group).
Food pellets (Kamadhenu Agencies, Bangalore, In-
dia) and water were available ad libitum to animals.

Melatonin (salt form) was purchased from Sisco
Research Laboratories Private Limited, Mumbai,
India. Ammonium acetate and all other chemicals
used in this study were of analytical grade. Group I
animals served as controls. Group II animals were
administered with ammonium acetate intraperito-
neally (ip) (100 mg/kg) every day for 45 days [7].
Group III animals were treated with ammonium
acetate as Group II animals along with melatonin
(5 mg/kg) (ip) [14]. Group IV animals received
melatonin (5 mg/kg) (ip) for 45 days.

Biochemical determinations were performed af-
ter 45 days of ammonium acetate and/or melatonin
administration. At the end of experimental period
(45 days) animals from all the groups were sacri-
ficed by cervical dislocation.

Blood samples were collected from each group
of rats. Biochemical analyses were performed in
blood, serum hemolysate and plasma samples. The
activities of aspartate transaminase [AST] and al-
anine transaminase [ALT] were analyzed in serum
[28], vitamin C content was determined in blood
[29], the levels of TBARS [20], vitamin E [2], am-
monia [6] and urea [38] were measured in plasma,
and in hemolysate the activities of CAT [32] and
SOD [9] were evaluated. Analysis of variance fol-
lowed by Least Significant Difference test was car-
ried out to detect the significant differences be-
tween control and experimental groups.

RESULTS

There was no significant change in the body
weight of the experimental animals when com-
pared to control (Tab. 1). The concentration of am-
monia and urea was significantly increased in am-
monium acetate-treated group (Tab. 1). The group
treated with ammonium acetate and melatonin
showed significantly lower levels of ammonia and
urea when compared to the ammonium acetate-
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treated group. The melatonin-treated group showed
near normal levels of ammonia and urea when
compared with the controls.

The concentration of TBARS in plasma was
significantly increased in the ammonium acetate-
treated group (Tab. 2). The ammonium acetate- and
melatonin-treated group showed significantly lower
levels of TBARS when compared to the correspon-
ding ammonium acetate-treated group (Tab. 2). The
melatonin-treated group showed near normal levels
of TBARS when compared with the controls. The
activities of the liver marker enzymes (ALT and

AST) (Tab. 2) were also altered in a similar manner
between the groups.

The levels of vitamins (C and E) (Tab. 3) were
significantly increased in ammonium acetate- and
melatonin-treated group, when compared with the
corresponding ammonium acetate-treated group.
Melatonin-treated group showed near normal le-
vels of antioxidant vitamins (C and E) when com-
pared with the controls. The alterations in the levels
of the enzymatic antioxidants such as CAT and
SOD (Tab. 3) were similar to that of vitamin C
and E.
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Table 1. Body weight changes and the levels of ammonia and urea in the rats treated with ammonium acetate and/or melatonin

Group Body weight (g)

Initial body wt Final body wt NH3 (�mol/l) Urea (mg/dl)

Normal 184 ± 15 194 ± 16 88.27 ± 7.82 10.68 ± 0.65

Ammonium acetate 206 ± 17 220 ± 19 331.11 ± 17.04a 22.60 ± 1.19a

Ammonium acetate + melatonin 190 ± 18 202 ± 17 166.76 ± 16.86b 13.29 ± 1.04b

Melatonin 185 ± 16 196 ± 18 83.92 ± 7.25ns 11.62 ± 0.96ns

Statistical significance was evaluated using ANOVA followed by Least Significant Difference (LSD) test. Group II is compared with
Group I (a p < 0.001). Group III is compared with Group II (b p < 0.001). Group IV is compared with Group I; ns – not significant

Table 2. Levels of TBARS, ALT and AST

Group TBARS
(nmol/ml)

Aspartate amino transferase
(IU/l)

Alanine amino transferase
(IU/l)

Normal 2.21 ± 0.20 105.93 ± 7.47 34.60 ± 3.57

Ammonium acetate 3.79 ± 0.33a 176.07 ± 14.25a 75.43 ± 4.44a

Ammonium acetate + melatonin 2.74 ± 0.18b 139.17 ± 9.76b 53.33 ± 3.65b

Melatonin 2.17 ± 0.23ns 106.74 ± 7.49ns 32.10 ± 3.39ns

Statistical significance was evaluated using ANOVA followed by Least Significant Difference (LSD) test. Group II is compared with
Group I (a p < 0.001). Group III is compared with Group II (b p < 0.001). Group IV is compared with Group I ; ns – not significant

Table 3. Levels of non-enzymatic and enzymatic antioxidants

Group Vitamin C
(mg/dl)

Vitamin E
(mg/dl)

SOD (50% inhibition of NBT
reaction/mg of protein)

CAT
(mmoles /dl)

Normal 1.64 ± 0.07 1.62 ± 0.05 2.54 ± 0.28 34.60 ± 3.57

Ammonium acetate 0.55 ± 0.03a 0.58 ± 0.03a 0.75 ± 0.19a 75.43 ± 4.44a

Ammonium acetate + melatonin 1.55 ± 0.05b 1.58 ± 0.03b 1.70 ± 0.29b 53.33 ± 3.65b

Melatonin 1.66 ± 0.06ns 1.67 ± 0.06ns 2.68 ± 0.24ns 32.10 ± 3.39ns

Statistical significance was evaluated using ANOVA followed by Least Significant Difference (LSD) test. Group II is compared with
Group I (a p < 0.001). Group III is compared with Group II (b p < 0.001). Group IV is compared with Group I; ns – not significant



DISCUSSION

Body weight changes

There were no significant changes in the body
weights of the experimental animals when com-
pared to controls (Tab. 1).

Ammonia and urea

In the liver, ammonia is removed either in the
form of urea in periportal hepatocytes and/or as
glutamine in perivenous hepatocytes [19]. Elevated
levels of ammonia and urea in ammonium acetate-
treated rats may be due to the liver damage caused
by ammonia-induced free radical generation. Re-
ports have shown that excess ammonia induces
nitric oxide synthase which leads to enhanced pro-
duction of nitric oxide, leading to oxidative stress
and liver damage [13, 30]. The decrease in urea and
ammonia in melatonin-treated rats may be due to
the antioxidant potential of melatonin. Melatonin
has been proved to be an effective free radical scav-
enger [26, 33], by inhibiting the pro-oxidant en-
zyme nitric oxide synthase [25].

Lipid peroxidation

Ammonia intoxication enhances lipid peroxida-
tion and leads to the formation of free radicals [11,
39]. This might account for the increased levels of
TBARS (which is a measure of lipid peroxidation
and an index of membrane oxidative damage) and
decreased vitamin C and E levels in ammonium
acetate-treated rats. Ammonia intoxication depletes
the level of glutathione (GSH) [12]. Since the re-
generation of vitamin C requires GSH, a deficiency
of GSH might cause the reduction of vitamin C and
E in the plasma, which was observed in our study.
The protective capability of antioxidants against
free radical-induced damage is increased if the
scavenging molecule can be recycled. Mahal et al.
(1999) reported regeneration of melatonin from the
one-electron oxidized melatonyl radical by both
ascorbate and urate. Melatonin directly scavenges
hydrogen peroxide to form N1-acetyl-N2-formyl-5-
methoxykynuramine, which, by the action of CAT
forms N1-acetyl-5-methoxykynuramine [34]. These
biogenic amines could also scavenge hydroxyl ra-
dical and reduce lipid peroxidation.

Transaminases

Aspartate and alanine aminotransferases are
sensitive indicators of liver cell injury [40]. En-
hanced activities of ALT and AST in ammonium
acetate-treated rats might be related to the devasta-
tion of the liver tissue [31, 40]. Melatonin abolishes
ammonia effects, by inhibiting the inducible nitric
oxide synthase expression and stimulating the glu-
tathione peroxidase, glutathione reductase and SOD,
whereby it decreases the oxidative stress and tissue
damage.

In our study, the decreased activities of antioxi-
dant enzymes (SOD and CAT) in ammonium ace-
tate-treated group may be due to the inhibition of
these enzymes by nitric oxide. It is known that
ammonia-induced inhibition of antioxidant enzy-
mes is mediated by the activation of NMDA recep-
tors of nitric oxide synthase and formation of nitric
oxide which inhibits the activities of antioxidant
enzymes [13].

The indole moiety of the melatonin molecule is
the reactive center of interaction with oxidants due
to its high resonance stability and low activation
energy barrier towards the free radical reactions.
The methoxy and amide side chains also contribute
significantly to melatonin’s antioxidant capacity.
The methoxy group in C5 appears to keep mela-
tonin from exhibiting pro-oxidative capacity [36].

Receptor-dependent actions of melatonin, e.g.
an antioxidative enzyme induction, seem to con-
tribute to the overall antioxidant protection by
melatonin [21]. Melatonin has the ability to scav-
enge up to 4 or more reactive species, which makes
melatonin a potent antioxidant and a free radical
scavenger. It can be concluded that melatonin could
control the oxidative abuse by (i) directly scaveng-
ing a variety of radicals and reactive oxygen spe-
cies, (ii) inducing antioxidative enzymes which re-
duce steady state levels of reactive oxygen species,
(iii) inhibiting nitric oxide synthase which gener-
ates nitric oxide and (iv) stabilizing cell membranes
which assist them in reducing oxidative damage.
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