SHORT COMMUNICATION

ENDOGENOUS LEVEL OF KYNURENIC ACID AND ACTIVITIES OF KYNURENINE AMINOTRANSFERASES FOLLOWING TRANSIENT GLOBAL ISCHEMIA IN THE GERBIL HIPPOCAMPUS

Elżbieta Luchowska1, Piotr Luchowski3, Anna Sarnowska3, Marian Wielosz3, Waldemar A. Turski1, Ewa M. Urbańska1,2#

1Department of Pharmacology and Toxicology, Medical University, Jazewskiego 8, PL 20-900 Lublin, Poland;
2Department of Toxicology, Institute of Agricultural Medicine, Jazewskiego 2, PL 20-901 Lublin, Poland;
3Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, PL 02-106 Warszawa, Poland

Endogenous level of kynurenic acid and activities of kynurenine aminotransferases following transient global ischemia in the gerbil hippocampus.

The accumulated data indicate that massively released excitatory amino acids play a major role in mediating the acute ischemic neuronal degeneration. Kynurenic acid (KYNA), the endogenous glutamate receptor antagonist, displaying a particularly high affinity for the glycine-site of N-methyl-D-aspartate (NMDA) receptor, was shown to ameliorate ischemic brain damage and its altered metabolism was implicated in the pathogenesis of neurodegeneration during ischemia/anoxia. Thus, we investigated the effect of transient global ischemia in gerbils on the endogenous levels of KYNA and the activity of its biosynthethic enzymes, kynurenine aminotransferases I (KAT I) and II (KAT II) in the hippocampus, 24 and 72 h after the ischemic episode. The level of KYNA in CA1 area was not altered 24 and 72 h following transient global ischemia (39.7 ± 3.1 vs. 44.8 ± 4.2, and 46.3 ± 4.0 vs. 47.8 ± 3.9 fmol/mg of tissue). Similarly, the activities of KATs in CA1 area were not changed and reached 1.91 ± 0.11 vs. 1.8 ± 0.19 and 1.86 ± 0.1 vs. 1.7 ± 0.15 (KAT I), and 0.56 ± 0.2 vs. 0.43 ± 0.16 and 0.54 ± 0.08 vs. 0.55 ± 0.17 (KAT II) pmol KYNA/mg of tissue/h, respectively. The presented data indicate that KYNA production is preserved in CA1 area of gerbil hippocampus during early stages after ischemic insult.

Key words: hippocampus, CA1 area, kynurenic acid, kynurenine aminotransferases, transient global ischemia

correspondence; e-mail: emurban@poczta.onet.pl