PRELIMINARY COMMUNICATION

USING REVERSE TRANSCRIPTION AND A COMPETITIVE POLYMERASE CHAIN REACTION FOR QUANTIFICATION OF α_{1B}-ADRENOCEPTOR mRNA

Grzegorz Kreiner, Marek Sanak, Agnieszka Zelek-Molik, Irena Nalepa*

Laboratory of Intracellular Signaling, Department of Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland

Molecular cloning studies have revealed the existence of three subtypes of α_1-adrenergic receptor (α_1-AR), namely α_{1A}, α_{1B} and α_{1D}. They are encoded by separate genes and have distinct pharmacological profiles. In rats’ brain, the expression of mRNA for subtypes of an α_1-AR is partially structure-dependent. Our previous studies employing Northern blot analysis of mRNA have shown that in the hippocampus, where α_{1A} predominates, the α_{1B} receptor (α_{1B}-AR) was almost undetectable. The goal of the present study was to establish the method of reverse transcription and competitive polymerase chain reaction (RT-cPCR) to quantify a steady state level of α_{1B}-AR mRNA in the hippocampus, prefrontal cortex and thalamus, and to compare the α_{1B}-AR’ pattern of expression with that revealed by Northern blot analysis. Our results have shown that α_{1B}-AR is similarly represented in the thalamus and prefrontal cortex. In the hippocampus, ten times lower expression of α_{1B} mRNA has been demonstrated with RT-cPCR, which was below a detection limit of Northern blot hybridization technique.

*correspondence; e-mail: nalepa@if-pan.krakow.pl

Key words: α_{1B}-adrenergic receptor mRNA, reverse transcription, PCR, Northern blot, rat brain