NG4-NITRO-L-ARGININE AND ITS METHYL ESTER INHIBIT BRAIN SYNTHESIS OF KYNURENIC ACID POSSIBLY VIA NITRIC OXIDE-INDEPENDENT MECHANISM

Piotr Luchowski1, Tomasz Kocki1, Ewa M. Urbańska1,2,\#

1Department of Pharmacology and Toxicology, Medical University, Jaczewskiego 8, PL 20-000 Lublin, Poland,
2Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, PL 20-950 Lublin, Poland

The effect of nitric oxide synthase (NOS) inhibitors on the brain production of endogenous glutamate receptor antagonist, kynurenic acid, was estimated \textit{in vitro}. Under standard incubation conditions NG4-nitro-L-arginine, but not NG6-nitro-L-arginine methyl ester, up to 5 mM, or 7-nitroindazole, up to 100 \textmu{}M, inhibited \textit{de novo} synthesis of kynurenic acid in cortical slices. However, during prolonged incubation, NG4-nitro-L-arginine methyl ester also reduced the production of kynurenic acid. The substrate for NOS, L-arginine (up to 5 mM), did not influence kynurenic acid synthesis and did not reverse the NG4-nitro-L-arginine-evoked changes, suggesting that the observed effects are not related to disturbed generation of NO. Enzymatic studies revealed that NG4-nitro-L-arginine and its methyl ester blocked the activity of brain kynurenine aminotransferase (KAT) I. The activity of KAT II was diminished only by NG6-nitro-L-arginine. Kinetic analyses have shown that NG3-nitro-L-arginine and its methyl ester reduce V_{max} and increase K_{m} of KAT I, whereas NG6-nitro-L-arginine diminishes V_{max} of KAT II. In conclusion, we report that NG4-nitro-L-arginine and its methyl ester impair brain synthesis of kynurenic acid, probably via NO-independent mechanism, which could contribute, at least partially, to the enhancement of neurotoxicity or seizures observed in some experimental designs based on their use.

\textbf{Key words:} brain, kynurenic acid, kynurenine aminotransferases, nitric oxide, NG4-nitro-L-arginine, NG6-nitro-L-arginine methyl ester, \textit{in vitro}

\# correspondence; e-mail: em.urban ska@poczta.onet.pl