EFFECTS OF ANTIDEPRESSANT DRUGS ON THE ACTIVITY OF CYTOCHROME P-450 MEASURED BY CAFFEINE OXIDATION IN RAT LIVER MICROSONES

Władysława A. Daniel, Maciej Syrek, Zbigniew Ryłko, Jacek Wójcikowski

Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland

Caffeine is a marker drug for testing the activity of CYP1A2 (3-N-demethylation) in humans and rats. Moreover, it is also a relatively specific substrate of CYP3A (8-hydroxylation). In the case of 1-N- and in particular 7-N-demethylation of caffeine, apart from CYP1A2, other cytochrome P-450 isoenzymes play a considerable role. The aim of the present study was to investigate the influence of imipramine, amitriptyline and fluoxetine on cytochrome P-450 activity measured by caffeine oxidation in rat liver microsomes. The obtained results showed that imipramine exerted a most potent inhibitory effect on caffeine metabolism. Imipramine decreased the rate of 3-N-, 1-N- and 7-N-demethylation, and 8-hydroxylation of caffeine, the effect on 3-N-demethylation being most pronounced ($K_i = 33 \, \mu M$). Amitriptyline showed distinct inhibition of 3-N- and 1-N-demethylation of caffeine, though its effect was less potent than in the case of imipramine ($K_i = 57$ and $61 \, \mu M$, respectively). The influence of amitriptyline on 8-hydroxylation and especially on 7-N-demethylation of caffeine was weaker ($K_i = 108$ and $190 \, \mu M$, respectively) than on 3-N- or 1-N-demethylation, suggesting a narrower spectrum of cytochrome P-450 inhibition by amitriptyline than by imipramine, involving mainly the subfamily CYP1A2, and – to a lesser degree – CYP3A. In contrast to the tested tricyclic antidepressants, fluoxetine did not exert any considerable effect on the 3-N- or 1-N-demethylation of caffeine ($K_i = 152$ and $196 \, \mu M$, respectively), which indicates its low affinity for CYP1A2. However, fluoxetine displayed a clear inhibitory effect on caffeine 7-N-demethylation ($K_i = 72 \, \mu M$), the reaction which is catalyzed mainly by other than CYP1A2 isoenzymes. Fluoxetine diminished markedly the 8-hydroxylation of the marker drug; as reflected by K_i values, the potency of inhibition of rat CYP3A by fluoxetine was similar to that of imipramine ($K_i = 40$ and $45 \, \mu M$, respectively). In summary, CYP1A2 was distinctly inhibited by imipramine and amitriptyline, CYP3A by imipramine and fluoxetine, while other CYP isoenzymes (CYP2B and/or 2E1) by imipramine and fluoxetine.

Key words: caffeine metabolism, rat, cytochrome P-450 activity, imipramine, amitriptyline, fluoxetine