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Two-armed bandit problem
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What is reinforcement learning?

Reinforcement learning (RL):

- Learning from the consequences of actions

- Actions are performed in the expectation of a predicted outcomes (expected value)

- Learning to select actions that maximize the accumulated reward over time (with higher value)
- The errors that occurs when the actual outcome differs from what had been predicted are used

for updating predictions

- Framework for studying value-based decision-making
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Dopamine system and reinforcement learning

- The RPE signal is used for updating the

. action values stored by striatal neurons
- DA neurons code the discrepancy 4

between the reward and its prediction - DA bursts associated with Positive PES

potentiate corticostriatal synapses
that are active at the time of DA release via D1R
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Use transgenic animals with ablation of Glu receptors in DA and D1R-expressing neurons
to investigate the specific role of DA in reward-based learning
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Rodent ,two-armed bandit’ task
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General performance
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Influence of reward ratio on choice (reward sensitivity)

Generalized Matching Law

log, (g—;) =a-log, ( R) + log,b
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Reward sensitivity — reflects the degree to which
the reward ratio actually
impacts the choice ratio
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Influence of previous choices & outcomes on subsequent choice

regression coefficient
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choice latency (s)
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Learning the value of actions & value-based action selection
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Summary & conclusion

Ablation of NMDA receptors in DA neurons and
MGIuR5 receptors in D1R-expressing neurons
decreased the likelihood of choosing alternative
with higher probability of reward and increased
response latency

Ablation of mGIuR5 receptors in D1 neurons
reduced sensitivity of mutant animals to changes
in reward ratios

Mutant animals were less likely to return to
a choice which was previously rewarded

Loss of NMDA receptors in DA neurons
decreased the learning rate from positive
outcomes, while ablation of Glu receptors in D1
neurons increased randomness in action selection
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