The role of glutamate receptor-dependent signaling in the dopamine system in reinforcement learning and adaptive decision-making

Przemysław Eligiusz Cieślak

Two-armed bandit problem

Choice: LL R R R R LLL R R R R LLL R R R R C Outcome: XX

Learned expected value: Value_{LeftChoice} < Value_{RightChoice}

Two-armed bandit problem

What is reinforcement learning?

Reinforcement learning (RL):

- Learning from the consequences of actions
- Actions are performed in the expectation of a predicted outcomes (expected value)
- Learning to select actions that maximize the accumulated reward over time (with higher value)
- The errors that occurs when the actual outcome differs from what had been predicted are used for updating predictions
- Framework for studying value-based decision-making

Dopamine system and reinforcement learning

- DA neurons code the discrepancy between the reward and its prediction

- The **RPE signal** is used for updating the action values stored by striatal neurons

- DA bursts associated with **Positive PEs** potentiate corticostriatal synapses that are active at the time of DA release via D1R

Aim

Use transgenic animals with ablation of Glu receptors in DA and D1R-expressing neurons to investigate the specific role of DA in reward-based learning

Rodent ,two-armed bandit' task

General performance

Influence of reward ratio on choice (reward sensitivity)

Generalized Matching Law

Reward sensitivity – reflects the degree to which the reward ratio actually impacts the choice ratio

Influence of previous choices & outcomes on subsequent choice

Reaction time (choice)

Reaction time (reward)

Learning the value of actions & value-based action selection

(1) Value updating rule:

- $V_L \leftarrow V_L + \alpha \cdot RPE$ $RPE = R_L V_L$
- where: V_L expected value of ,Left' option R_L – outcome received from ,Left' option α – **learning rate**, determines how rapidly the estimate of expected value is updated

(2) Action selection rule (softmax):

$$P_L = \frac{e^{\beta V_L}}{e^{\beta V_L} + e^{\beta V_R}}$$

where: P_L – probability of choosing ,Left' option β – randomness in action selection: With β = 0, action selection is totally random, As β is increased, the model is more likely to choose the action believed to have the maximum value

Summary & conclusion

- Ablation of NMDA receptors in DA neurons and mGluR5 receptors in D1R-expressing neurons decreased the likelihood of choosing alternative with higher probability of reward and increased response latency
- Ablation of mGluR5 receptors in D1 neurons reduced sensitivity of mutant animals to changes in reward ratios
- Mutant animals were less likely to return to a choice which was previously rewarded
- Loss of NMDA receptors in DA neurons decreased the learning rate from positive outcomes, while ablation of Glu receptors in D1 neurons increased randomness in action selection

Thank You!

if-pan.krakow.pl/en/departments/employees/208